期刊文献+

动作识别训练数据的扩展研究 被引量:1

Study on Extension of Training Data for Activity Recognition
在线阅读 下载PDF
导出
摘要 动作识别是康复中心研究领域的一个热门话题。机器学习是动作识别的一个重要方面。由于样本标注需要付出诸多人工努力,所以被标注的样本数量是有限的。而未被标注样本数量是庞大缘于它容易获取,无需人为注解。训练数据是基于半监督学习动作识别的核心。文章将着重强调数据选择策略和扩展度,这也是训练数据选择的基础。文章结合已标注的有限样本,利用未被标注样本来提高动作识别的精度。 Activity recognition is a hot topic in Healthcare.Machine learning is a key aspect in activity recognition.Since the number of labeled samples is limited because they require the efforts of human annotators,while the number of unlabelled data is huge because they are easy to get without human's labeling effort.The training data is the centre of the semi-supervised based activity recognition.This paper emphasize the selection strategy and enlarge degree,which are the basic of the training data selection.This paper provide a method to utilize the available unlabeled samples to enhance the performance of activity learning with a limited number of labeled samples.
出处 《计算机与数字工程》 2010年第11期22-25,37,共5页 Computer & Digital Engineering
基金 江苏省高校自然科学基金项目(编号:08KJD520018) 南京信息工程大学自然科学基金项目(编号:20080302)资助
关键词 动作识别 半监督学习 数据选择策略 扩展度 activity recognition semi-supervised learning data selection strategy enlarge degree
  • 相关文献

参考文献22

  • 1Stanford, V. 2002. Using pervasive computing to deliver elder care[J]. IEEE Pervasive Computing, 2002: 10-13.
  • 2Kidd, C. D., Orr, R., Abowd, G. D., etal. The aware home: a living laboratory for ubiquitous computing research[C]//Proceedings of the Second International Workshop on Cooperative Buildings, 1992:191-198.
  • 3S. Intille, K. Larson, E. Tapia, et al. Using a live-in laboratory for ubiquitous computing research [M]. LNCS Springer-Verlag, 2006.
  • 4Guan, D. H., Yuan, W. W., Lee, Y. K., et al. Activity recognition based on semi-supervised learning [C]//Proceedings of 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea, 2007: 469-475.
  • 5Donghai Guan, Young-Koo Lee, Sungyoung Lee, Activity Recognition with the Aid of Unlabeled Samples [C]//Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC'09), Korea, 2009:720-724.
  • 6Blum, A. , Mitchell, T. Combining labeled and unlabeled data with co-training[C]//Proceedings of llth Annual Conf. Computational Learning Theory, Madison, Wisconsin, 1998 : 92 - 100.
  • 7Stillman, S., Tanawongsuwan, R., Essa, I. A system for tracking and recognizing multiple people with multiple cameras[C]//Proceedings of the Second International Conference on Audio-Vision-based Person Authentication, Washington, DC,1999.
  • 8Bao, L. Physical activity recognition from acceleration data under seminaturalistic conditions[D]. M. Eng thesis, EECS, Massachusetts Institute of Technology, 2003.
  • 9Abowd, G. D. Director of the AwareHome initiative [D]. Georgia Insitute of Technology, 2002.
  • 10Donghai Guan, Weiwei Yuan, Young-Koo Lee, et al. Activity Recognition Based on Semi-supervised Learning[C]//the 13th IEEE International Conference on Embedded and Real Time Computing Systems and Applications, Korea, 2007.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部