期刊文献+

无线网络中入侵检测系统的设计

Design of Intrusion Detection System in Wireless Network
在线阅读 下载PDF
导出
摘要 在无线的环境下,入侵者将会通过WAP而入侵到无线局域网络,为了能提早侦测出攻击的行为,因此我们通过更改WAP韧体的技术,将WAP视为侦测入侵的传感器,且将侦测重点放在目前最广为大家所使用的802.11标准的无线局域网络。本论文提出一个结合集中与分散架构的分布式无线入侵侦测系统,通过多个WAP取得资料、分析资料后,再将结果交由分布式入侵侦测协调者做进一步的分析控制。系统实验结果显示,本系统确实能有效侦测无线网络入侵行为。 In this paper, we propose a distributed wireless intrusion detection system (DWIDS) for 802.11 WLAN. The pro- posed system is a hybrid of distributed and centralized architecture. In wireless networks, intruders may attack WLAN via wireless access point (AP). Therefore, AP can be used as the distributed sensors for detecting intrusions in the first place. In order to do it, we modified the firmware of AP and installed Snort - wireless and Kismet on AP for collecting and analyzing data. The analyzed data from different APs are then sent to the DWIDS coordinator for further processing. The implementation and experimental results show that the proposed system indeed detects several types of intrusions from WLAN.
作者 李树文
出处 《攀枝花学院学报》 2010年第6期36-39,共4页 Journal of Panzhihua University
关键词 无线存取点 无线局域网络 分布式入侵侦测系统 wireless access point wireless local area network distributed wireless intrusion detection system
  • 相关文献

参考文献4

二级参考文献27

  • 1杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:91
  • 2HANJW KAMBEM 范明 孟晓峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.237-251.
  • 3FREUND Y.Boosting a Weak Learning Algorithm by Majority[J].Information and Computation,1995,121 (2):256-285.
  • 4FREUND Y,SCHAPIRE RE.Experiments with a New Boosting Algorithm[A].Proceedings of the International Conference in Machine Learning[C].San Francisco,CA,1996.148-156.
  • 5BREIMAN L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 6AMIT Y,GEMAN D.Shape quantization and recognition with randomized trees[J].Neural Computation,1997,9(7):1545-1588.
  • 7BREIMAN L.Randomizing outputs to increase prediction accuracy[J].Machine Learning,2000,40(3):229-242.
  • 8FAN W,WANG HX,YU PS,et al.Is random model better on its accuracy and efficiency[A].Proceedings of Third IEEE International Conference on Data Mining (ICDM-2003)[C].2003.
  • 9BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5 -32.
  • 10HU KY,LU YC,SHI CY.Feature ranking in rough sets[J].AI Communications,2003,16(1):41 -50.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部