期刊文献+

求解向量广义Nash平衡问题的一个精确罚函数方法(英文)

An Exact Penalty Method for Vector Generalized Nash Equilibrium Problems
在线阅读 下载PDF
导出
摘要 研究约束向量广义Nash平衡问题,其中所有函数都是凸的.利用精确罚函数技巧,在一定条件下,证明了解这样的约束向量广义Nash平衡问题可以简化为解约束向量Nash平衡问题. In this paper,we study constrained vector generalized Nash equilibrium problems in which all the functions are convex.Using the exact penalty function technique,under certain conditions,we show that solving such a constrained vector generalized Nash equilibrium problem can be reduced to solving a constrained vector Nash equilibrium problem.
作者 张杰 张跃
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期768-772,共5页 Journal of Sichuan Normal University(Natural Science)
基金 supported by National Natural Science Foundation of China(10671039)~~
关键词 向量广义Nash平衡问题 向量Nash平衡问题 向量优化 精确罚函数 vector generalized Nash equilibrium problem vector Nash equilibrium problem vector optimization exact penalty function
  • 相关文献

参考文献18

  • 1Debreu G.A social existence theorem[J].Proceedings of the National Academy of Sciences,1952,38:886-893.
  • 2Arrow K J,Debreu G.Existence of an equilibrium for a competitive economy[J].Econometrica,1954,22:265-290.
  • 3Pang J S,Fukushima M.Quasi-variational inequality,generalized Nash equilibria,and multi-leader-follower games[J].Computational Management Science,2005,2:21-56.
  • 4Fukushima M.Restricted generalized Nash equilibria and constrolled penalty algorithm[J].Computational Management Science,2008,7:21-22.
  • 5Chen G Y,Huang X X,Yang X Q.Vector Optimization,Set-Valued and Variational Analysis[M].Berlin:Springer,2005.
  • 6Giannessi F.Vector Variational Inequalities and Vector Equilibrium-Mathematic Theories[M].Dordrecht:Kluwer Academic Publishers,2000.
  • 7Huang X X,Yang X Q,Teo K L.Convergence analysis of a class of penalty methods for vector optimization oroblems with cone constraints[J].J Global Optimization,2006,36:637-652.
  • 8Huang X X,Yang X Q.Calmness and exact penalization in vector optimization with cone constraints[J].Computational Optimization and Applications,2006,35:47-67.
  • 9Hobbs B F,Pang J S.Nash-Cournot equilibrium in electric power markets with piecewise linear demand functions and joint constraints[J].Operations Research,2007,50:113-127.
  • 10张杰.向量拟变分不等式与标量广义拟变分不等式之间的关系(英文)[J].重庆邮电大学学报(自然科学版),2009,21(6):828-830. 被引量:1

二级参考文献12

  • 1Cubiotti P. Application of Quasivariational Inequalities to Linear Control Systems[J]. Journal of Optimization Theory and Applications, 1996, 89: 101-113.
  • 2Harker P.T. and Pang J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J]. Mathematica/Programming, 1990, 48: 161-220.
  • 3Facchinei F. and Pang J.S. Finite-dimensional variational inequality and Complementarity Problems (Volume Ⅰ and Ⅱ)[M]. Springer, New York, 2003.
  • 4Huang X.X. and Yang X.Q. Calmness and exact penalization in vector optimization with cone constraints[J]. Computatlona/Optimization and Application, 2006, 35: 47-67.
  • 5Huang X.X. and Yang X.Q. Levitin-Polyak well-posedness in generalized variational inequali- ties with functional constraints[J]. Journal of Industrial and Management Optimization, 2007, 3: 671-684.
  • 6Huang X.X. and Yang X.Q. Levitin-Polyak well-posedness of Vector Variational Inequality Problems with Functional Constraints. submitted for publication.
  • 7Huang X.X. and Yang X.Q. Generalized Levitin-Polyak well-posedness in Constrained Optimization[J]. SIAM Journal on Optimization, 2006, 17: 243-258.
  • 8Konsulova A.S. and Revalski J.P. Constrained convex optimization problems-well-posedness and stability[J]. Numerical Functional Analysis and Optimization, 1994, 15: 889-907.
  • 9Levitin E.S. and Polyak B.T. Convergence of minimizing sequences in conditional extremum problems[J].Soviet Math. Dokl., 1966, 7: 764-767.
  • 10Tykhonov A. N. On the stability of the functional optimization problem[J]. USSR Compt. Math. Math. Phys., 1966, 6: 28-33.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部