摘要
设S(Xn,A)是具有稳定子集A的有限奇异变换半群.借助已有的研究方法,首先考虑了半群S(Xn,A)中E(Jn*-1)的图论性质,得到了与E(J*n-1)相关联的有向图是极大强完备的.其次,确定了Jn*-1中所有由幂等元生成的元素以及由E(Jn*-1)的两个子集I1、I2生成的半群结构.这些结果对进一步研究该类半群的结构奠定了基础.
Let S(Xn,A) be finite singular transformation with a stable subset A.By using methods used by others,some digraph properties associated with E(Jn*-1) in S(Xn,A) are considered.It is proved that the directed digraph associated with E(Jn*-1) is maximal strongly complete.Moreover the elements generated by idempotents in Jn*-1 are characterized,and the structure of the subsemigroup generalted by the subsets I1,I2 of E(Jn*-1) is also given.The present results are useful to further study the properties of the semigroups.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期778-783,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10861004)
贵州省科学技术基金(黔科合J字LKS[2009]02号)资助项目
关键词
稳定子集
奇异变换半群
幂等生成元
极大强完备
stable subset
singular transformation semigroup
idempotent generator
maximal strong-complete