期刊文献+

基于规则及多特征跟踪的肺结节的智能检测方法 被引量:3

Intelligent Detection of Lung Nodules based on Rules and Multi-feature Tracking
在线阅读 下载PDF
导出
摘要 肺结节的智能识别对肺癌的诊断至关重要。为了在大量的肺部CT图片中准确智能识别肺结节,我们研究了一个基于规则及多特征跟踪的肺结节计算机辅助检测方法。其中,采用活动轮廓模型的分割方法实现候选肺结节分割,采用基于规则的决策方法以及多特征跟踪方法实现肺结节分类。实验证明,该肺结节的智能检测方法满足肺结节计算机辅助诊断的要求。 Intelligent recognition of lung nodules which are distinct signs of lung cancer is important for diagnosis of lung cancer.In order to accurately identify lung nodules in a large amount of thorax CT images,a method of Computer-Aided Detection(MCAD) for lung nodules based on rules and multi-feature tracking was proposed in this paper.In this proposed method,candidate pulmonary nodules were segmented by GVF snake model;lung nodules were classified based on rules and multi-feature tracking method.Experiments demonstrate that the MCAD provide a good means for computer-aided diagnosis of lung nodules and cancer.
出处 《生物医学工程研究》 2010年第2期79-83,105,共6页 Journal Of Biomedical Engineering Research
基金 中国博士后基金资助项目(20090450866) 广东省自然科学基金资助项目(8451064101000631) 广州市番禺区科技攻关项目(2009-Z-108-1) 教育部博士点基金资助项目(200805610018) 广东省教育部产学研结合项目(2009B090300057)
关键词 肺结节 计算机辅助检测 分类 医学图像 识别 Lung nodules Computer-aided detection Classification Medical image Recognition
  • 相关文献

参考文献7

  • 1Sluimer I,Schilham A,Prokop M,et al.Computer analysis of computed tomography scans of the lung:a survey[J].IEEE Transactions on medical imaging,2006,25(4):385-396.
  • 2崔云,马大庆.肺结节的CT计算机辅助检测和诊断的基本方法和应用[J].中国医学影像技术,2007,23(3):469-472. 被引量:11
  • 3Zhang Li,Fang Ming,Naidich D P,et al.Consistent interactive segmentation of pulmonary ground glass nodules indentified in CT studies[J].Proc SPIE,2004,5370:1709.
  • 4Ei Baz,Ay man,Gimel farb,et al.A new CAD system for early diagnosis of detected lung nodules[A].Image Processing,ICIP 2007.IEEE International Conference[C].2007.2:461-464.
  • 5李彬,欧陕兴,田联房,余霞.基于自适应自由变形法和梯度下降法的胸部多模医学图像配准[J].计算机应用研究,2009,26(10):3978-3982. 被引量:9
  • 6Wormanns D,Diederich S.Characterization of small pulmonary nodules by CT[J].Eur Radiol,2004,14:1380-1391.
  • 7Giger M,Bae K,and MacMahon H.Computerized detection of pulmonary nodules in computed tomography images[J].Radiology,2008,29:459-465.

二级参考文献34

  • 1李彬,田联房,陈萍,毛宗源.一个普适的混合体绘制方法[J].生物医学工程学杂志,2008,25(3):524-530. 被引量:1
  • 2汪吉林,姜波.模糊人工神经网络在矿井构造评价中的应用[J].中国矿业大学学报,2005,34(5):609-612. 被引量:10
  • 3刘瑛,吴宁.CT三维体积测量技术在孤立性肺结节诊断中的初步应用[J].医学影像学杂志,2006,16(1):88-90. 被引量:8
  • 4王晓华,陈卉,马大庆,高培毅,周新华.人工神经网络在孤立性肺结节CT诊断研究中的应用[J].中华放射学杂志,2006,40(4):377-382. 被引量:21
  • 5BETKE M, HONG H, KO J P. Landmark detection in the chest and registration of lung surfaces with an application to nodule registration [ J]. Medical Image Analysis, 2003, 7( 1 ) :265-281.
  • 6MAINTZ J B A, VIGERGEVER M A. A survey of medical image registration[ J]. Medical Image Analysis, 1998, 2( 1 ) : 1-36.
  • 7BLAFFERT T, WIEMKER R. Comparison of different follow-up lung registration methods with and without segmentation [ C ]//Proc of SPIE Medical Imaging. 2004 : 1701 - 1708.
  • 8LEE S Y, WOLBERG G, SUNG Y S. Scattered data interpolation with multilevel B-Splines [ J]. IEEE Trans on Visualization and Computer Graphics, 1997, 3 ( 3 ) :228- 249.
  • 9RUECKERT D, SONODA L I, HAYES C, et al. Nonrigid registration using free-form deformations: application to breast MR images [J]. IEEE Trans on Medical Imaging, 1999, 18(8) :712-721.
  • 10FUMIHIKO I, KANROU O, KENICHI H. A data distributed parallel algorithm for nonrigid image registration [ J ]. Parallel Computing, 2005, 31 ( 1 ) :19-43.

共引文献17

同被引文献29

  • 1石羽,曹晓光,张弘,张晓鹏.肺结节自动检测算法研究[J].仪器仪表学报,2006,27(z3):2265-2267. 被引量:7
  • 2陈柔伊,张尧,武志刚,陈泽淮.改进的模糊聚类算法在负荷预测中的应用[J].电力系统及其自动化学报,2005,17(3):73-77. 被引量:26
  • 3米红,张希雯,陈文生.基于数据挖掘平台的模糊聚类算法及应用研究[J].厦门理工学院学报,2006,14(2):17-21. 被引量:8
  • 4范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 5LIND T, YAN C R, CHEN W T. Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system [J]. Comput Med hnag Grap, 2005, 29 (6) : 447-458.
  • 6NIE Shengdong, CHEN Zhaoxue, LI Lihong. A CI feature based pulmonary nodule segmentation using three-domain mean shift clustering [J]. Journal of East China Normal Uni versity (Nature science), 2008, 2008(1): 60-67.
  • 7KO J P, BETKE M. Chest CT: automated nodule detection and assessment of change over lime-- preliminary experience [J]. Radiology, 2001, 218(1): 267-273.
  • 8VIGGIANO R W, SWENSEN S J. ROSENOW E C 3rd. E- valuation and management of solitary and multiple pulmonary nodules [J]. Clin Chest Med, 1992, 13(1) : 83-95.
  • 9ERASMUS J J, CONNOLLY J E, MCADAMS H P, et al. Solitary pulmonary nodules: Part I . Morphologic evaluation for differentiation of benign and malignant lesions [J]. Radio-graphics, 2000, 20(1): 43-58.
  • 10GURCAN M N, SAHINER B, PETRICK N, et al. Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a eomputer-aided diagnosis system [J]. MedPhys, 2002, 29(11): 2552-2558.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部