期刊文献+

Stability and output feedback stabilization for systems with Markovian switching and impulse effects

Stability and output feedback stabilization for systems with Markovian switching and impulse effects
在线阅读 下载PDF
导出
摘要 We investigate the exponential stability in the mean square sense for the systems with Markovian switching and impulse effects.Based on the statistic property of the Markov process,a stability criterion is established.Then,by the parameterizations via a family of auxiliary matrices,the dynamical output feedback controller can be solved via an LMI approach,which makes the closed-loop system exponentially stable.A numerical example is given to demonstrate the method. We investigate the exponential stability in the mean square sense for the systems with Markovian switching and impulse effects.Based on the statistic property of the Markov process,a stability criterion is established.Then,by the parameterizations via a family of auxiliary matrices,the dynamical output feedback controller can be solved via an LMI approach,which makes the closed-loop system exponentially stable.A numerical example is given to demonstrate the method.
出处 《控制理论与应用(英文版)》 EI 2010年第4期453-456,共4页
基金 supported by the National Natural Science Foundation of China(No.60974027)
关键词 Markov process IMPULSE Stability in the mean square sense Output feedback controller Markov process Impulse Stability in the mean square sense Output feedback controller
  • 相关文献

参考文献11

  • 1X. Mao, C. Yuan. Stochastic Differential Equations with Markovian Switching[M]. London: Imperial College Press, 2006.
  • 2X. Feng, K. A. Loparo, Y. Ji, et al. Stochastic stability properties of jump linear systems[J]. IEEE Transactions on Automatic Control, 1992, 37(1): 38 - 53.
  • 3Y. Ji, H. J. Chizeck. Controllability, stabilizability, and continuous- time Markovian jump linear quadratic control[J]. IEEE Transactions on Automatic Control, 1990, 35(7): 777 - 788.
  • 4D. E de Farias, J. C. Geromel, B. R. do Val, et al. Output feedback control of Markov jump linear systems in continuous-time [J]. IEEE Transactions on Automatic Control, 2000, 45(5): 944 - 949.
  • 5Z. Guan, T. Qian, X. Yu. Controllability and observability of linear time-varing impulsive systems[J]. IEEE Transactions on Circuits and Systems-l, 2002, 49(8): 1198 - 1207.
  • 6Z. Guan, D. J. Hill, X. Shen. On hybrid impulsive and switching systems and applications to nonlinear control[J]. IEEE Transactions on Automatic Control, 2005, 50(7): 1058 - 1062.
  • 7T. Yang. Impulsive Control Theory[M]. Berlin: Springer-Verlag, 2001.
  • 8H. Ye, A. N. Michel, L. Hou. Stability analysis of systems with impulse effects[J]. IEEE Transactions on Automatic Control, 1998, 43(12): 1719- 1723.
  • 9H. Ye, A. N. Michel, L. Hou. Stability theory for hybrid dynamical systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4): 461 - 474.
  • 10G. Xie, L. Wang. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[J]. IEEE Transactions on Automatic Control, 2004, 49(6): 960 - 966.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部