期刊文献+

基于多维本体的便携式个性化用户模式构建方法 被引量:1

Construction Method of the Portable Personalized User Profile Based on Multi-dimensional Ontology
在线阅读 下载PDF
导出
摘要 本文主要介绍了一种基于多维本体的便携式个性化用户模式构建方法。文章首先对相关研究做了文献综述,分析了现有方法存在的问题,并提出了多维本体的思想,对其表达方法和使用特点做了说明。其次,文章从基本框架和构建方法的角度,对基于多维本体的便携式个性化用户模式的相关实现细节也给予了详细说明。 This paper mainly describes a method of constructing the portable personalized user profile based on multi-dimensional ontology.The paper first summarizes the literatures of the related research,analyzes the problems of the current methods,and proposes the idea of multi-dimensional ontology.The method to express the idea and its usage characteristics are also explained.Then,the paper gives a detailed description of the implementation of the portable personalized user profile based on multi-dimensional ontology from the perspective of the basic architecture and the construction method.
出处 《情报理论与实践》 CSSCI 北大核心 2010年第11期116-121,共6页 Information Studies:Theory & Application
基金 江苏省教育厅"青蓝工程"基金资助项目和2009年南京财经大学校级课题(项目编号:C0934)的成果之一
关键词 多维本体 个性化 用户模式 multi-dimensional ontology personalization user profile
  • 相关文献

参考文献2

  • 1Zhang Ping,Ji Yang,Feng Zhiyong (Research Center for Wireless New Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China) The Mobile Ubiquitous Service Environment (MUSE),established through the coordination and integration of mobile telecommunications and ubiquitous network,in the pursuit of Always Best Experience (ABE),represents the major development trend for the next generation mobile wireless network. Research on MUSE will involve the integration of the computing model system,service platform system,operating system and terminal structure system,all of which involve exploration and innovation of a new networking structure,its control and management as well as way of measuring. The change in network resources triggers the change in network computing models. To let readers have a basic understanding of MUSE,this lecture introduces it in four sections. This section focuses on the development and demand analysis of the service platform..Mobile Ubiquitous Service Environment[J].ZTE Communications,2007,5(2):58-60. 被引量:13
  • 2李树青.基于加权XML模型的个性化产品推荐方法[J].现代图书情报技术,2009(4):64-69. 被引量:2

二级参考文献10

  • 1潘有能.XML文档自动聚类研究[J].情报学报,2006,25(2):215-220. 被引量:16
  • 2Kobsa. Privacy - enhanced Web Personalization : From the Adaptive Web: Methods and Strategies of Web Personalization Volume 4321 of Lecture Notes in Computer Science[ M ]. Springer- Verlag, Berlin Heidelbergs, New York, 2007.
  • 3Ting P L, Yung F Y, Deng N C. A Semantic - expansion Approach to Personalized Knowledge Recommendation [ J ]. Decision Support Systems, 2008,45 ( 3 ) :401 - 412.
  • 4Gonzalez R A, Chen N, Dahanayake A. Personalized Information Retrieval and Access[ M]. IGI Global, 2008.
  • 5Henrik B S. Ontology - based Information Retrieval Computer Science Section[ D]. Denmark : Roskilde University, 2006.
  • 6Trajkova. Improving Ontology - Based User Profiles[ D]. USA : University of Kansas, 2003.
  • 7Sure Y, Staab S, Studer R. On - to - Knowledge Methodology (OTKM) [ M ]. Handbook on Ontologies, Berlin, Heidelberg, 2003: 117-132.
  • 8Crestani. Application of Spreading Activation Techniques in Information Retrieval [ J ]. Artificial Intelligence Review, 1997, 11 (6) : 453 - 482.
  • 9Middleton, De R, Shadbolt N: Ontology - based Recommender Systems[M]. Handbook on Ontologies. Berlin, Heidelberg, New York, 2004.
  • 10郑仕辉,周傲英,张龙.XML文档的相似测度和结构索引研究[J].计算机学报,2003,26(9):1116-1122. 被引量:28

共引文献13

同被引文献28

  • 1Borgman C L. The conundrum of sharing research data [ J ]. Journal of the American Society for Information Science and Technology ,2012,63 ( 6 ) : 1059-1078.
  • 2Ghosh R, Dekhil M. Mashups for semantic user profiles [ C ]//Proceedings of the 17th international conference on World Wide Web, ACM ,2008 : 1229-1230.
  • 3Shtykh R Y,Jin Q. Integrating Search and Sharing: User- Centric Collaborative Information Seeking[ C ]//Computer and Information Science, ICIS 2009, Eighth IEEE/ACIS International Conference on IEEE ,2009 :388-393.
  • 4Chen T, Han W L, Wang H D, et al. Content Recommendation System Based on Private DynamicUser Profile [ C ]//Conference on Machine Learning and Cybernetics,2007 ( 8 ) : 2112-2118.
  • 5Kuflik T, Kay J, Kummerfeld B. Challenges and Solutions of Ubiquitous User Modeling [ M ]. Ubiquitous Display Environments, Springer Berlin Heidelberg,2012:7-30.
  • 6Nakatsuji M, Yoshida M, Ishida T. Detecting innovative topics based on user-interest ontology [ C ]//Web Semantics: Science, Services and Agents on the World Wide Web ,2009 ( 7 ) : 107-120.
  • 7Papadogiorgaki M, Papastathis V, Nidelkou E, et al. Two- level Automatic Adaptation of a Distributed User Profile for Personalized News Content Delivery [ J ]. Journal of Digital Multimedia Broadcasting ,2008,2 ( 10 ) : 1-21.
  • 8Park Y J, Chang K N. Individual and group behavior- based customer profile model for personalized product recommendation[ J]. Expert Systems with Applications, 2009,36(2) :1932-1939.
  • 9Kwon O, Kim J. Concept lattices for visualizing and generating user profiles for context-aware service recommendations [ J ]. Expert Systems with Applications, 2009,36 ( 2 ) : 1893 -1902.
  • 10Sieg A, Mobasher B, Burke R. Web search personalization with ontological user profiles [ C ]//Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, ACM ,2007:525-534.

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部