期刊文献+

基于改进高斯混合模型的实时运动目标检测与跟踪 被引量:23

Moving object real-time detection and tracking based on improved Gaussian mixture model
在线阅读 下载PDF
导出
摘要 为提高运动目标检测与跟踪的可靠性,提出了一种基于改进高斯混合模型的实时运动目标检测与跟踪算法。该算法建立可自动调节分布数目的高斯混合背景模型,通过背景减除获取前景图像;利用目标相邻帧的连续性分割运动目标;在此基础上将传统的颜色直方图模型进行改进,提高目标颜色分布的可信度,进而根据目标的位置、大小和颜色构造运动目标全局匹配相似度函数,实时完成运动目标检测与跟踪。利用大量的监控视频数据进行验证,结果表明,与传统的检测跟踪算法相比,该算法减少了计算量,提高了复杂背景情况下运动目标检测与跟踪的可靠性。 To improve the reliability of moving objects detection and tracking,this paper presented a moving object real-time detection and tracking algorithm based on improved Gaussian mixture model background modeling. The algorithm established Gaussian mixture background model which could adjust the number of distribution automatically and detected moving objects by background subtraction,separated the moving object by the continuity of adjacent frames. On this basis,enhanced the reliability of objective color distribution by improving traditional color histogram model. Then achieved real-time moving object detection and tracking by the similarity function which was constructed by the position,size and color of objects. Lots of experiments based on a large amount of practical monitor video data were completed,and the results show that comparing with the traditional algorithm,the new algorithm reduces the computational complexity and improves the reliability of moving objects de-tection and tracking in complex environment.
作者 何信华 赵龙
出处 《计算机应用研究》 CSCD 北大核心 2010年第12期4768-4771,共4页 Application Research of Computers
基金 航空基础科学基金资助项目(20090818004)
关键词 目标检测 目标匹配 目标跟踪 高斯混合 背景减除 object detection object matching object tracking Gaussian mixture background subtraction
  • 相关文献

参考文献11

  • 1TSAI D M,LAI S C.Independent component analysis-based background subtraction for indoor surveillance[J].IEEE Trans on Image Processing,2009,18(1):158-167.
  • 2AVIDAN S.Ensemble tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(2):261-271.
  • 3WANG Yang.Real-time moving vehicle detection with cast shadow removal in video based on conditional random field[J].IEEE Trans on Circuits and Systems for Video Technology,2009,19(3):437-441.
  • 4STAUFFER C,GRIMSON W E L.Learning patterns of activity using real-time tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 5ZHANG J,CHEN C H.Moving objects detection and segmentation in dynamic video backgrounds[C] //Proc of IEEE Conference on Technologies for Homeland Security.2007:64-69.
  • 6ZENG H C,LAI S H.Adaptive foreground object extraction for real-time video surveillance with lighting variations[C] //Proc of IEEE International Conference on Acoustics,Speech,and Signal Processing.Honolulu,HI:Institute of Electrical and Electronics Engineers,2007:1201-1204.
  • 7SHIMADA A,ARITA D,TANIGUCHI R I.Dynamic control of adaptive mixture-of-Gaussians background model[C] //Proc of IEEE International Conference on Video and Signal Based Surveillance.Washington DC:IEEE Computer Society,2006:1-5.
  • 8LEE D S.Effective Gaussian mixture learning for video background subtraction[J].IEEE Tran on Pattern Analysis and Machine Intelligence,2005,27(5):827-832.
  • 9HOPRASERT T,HARWOOD D,DAVIS L S.A statistical approach for real-time robust background subtraction and shadow detection[C] //Proc of the 7th IEEE International Conference on Computer Vision.Maryland:Frame Rate Workshop,1999:1-19.
  • 10JUNG C R.Efficient background subtraction and shadow removal for monochromatic video sequences[J].IEEE Trans on Multimedia,2009,11(3):571 -577.

同被引文献178

引证文献23

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部