期刊文献+

一种基于迭代学习的自适应交通信号控制方法 被引量:9

Iterative Learning Based Adaptive Traffic Signal Control
在线阅读 下载PDF
导出
摘要 迭代学习控制作为数据驱动控制的一个分支,经历二十多年的发展,无论在理论研究,还是在实际应用上都取得了丰硕成果.本文以交通信号系统为被控对象,利用迭代学习控制和模糊理论的核心思想,设计基于数据驱动的信号交叉口自适应控制器,使交叉口的通行能力得到显著提升.信号控制的关键规则采用模糊迭代理论,通过迭代学习使得信号控制策略适应交通流的不断变化,通过模糊理论处理交通系统中的不确定性和随机性,从而避免对复杂交通系统的建模,发挥了数据驱动的无模型控制优势.最后,使用基于VISSIM的仿真平台对算法的有效性和实用性进行验证.仿真结果表明,基于迭代学习自适应交通信号控制方法的控制效果优于定时控制和感应控制. Iterative learning control(ILC),as a branch of data-driven control,has obtained plentiful achievements both at theoretical research and practical application over the past two decades.Taking the traffic signal control system as a plant system,the paper introduces the idea of the ILC and fuzzy logic to design an adaptive data-driven traffic signal controller to improve the capacity of the intersection.The key rule of the signal control logic is described by fuzzy iterative theory,and the control strategy can adapt itself to the changing of traffic flow by iterative learning and handle the uncertainty and randomness in traffic system by fuzzy logic,so as to avoid the modeling of complex transport system and take advantages of data-driven on non-model control.Finally,the proposed method is testified to be applicable and effective based on the simulation results by VISSIM.The simulation result indicates that the effect of the proposed method is more effective than the fixed and actuated control approaches.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第6期34-40,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家'973'项目课题(2006CB705506) 国家自然科学基金项目(60774034 60834001)
关键词 城市交通 迭代学习 模糊控制 数据驱动 自适应 交通信号控制 urban traffic iterative learning fuzzy control data-driven adaptive traffic signal control
  • 相关文献

参考文献6

  • 1Uchiyama M. Formulation of high-speed motion of a me- chanical ann by trial [ J]. Trans Society of Instrumenta- tion and Control Engineers (in Japanese), 1978, 14 (6) : 706 -712.
  • 2Arimoto S, Kawamura S, Miyazaki F. Bettering opera- tion of robotics by learning [ J ]. J. Robotic System, 1984, 1 (2) : 123 - 140.
  • 3Hyo- Sung A, Chen Y Q, Moore K L. Iterative learn- ing control : brief survey and categorization [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6): 1099- 1121.
  • 4侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667. 被引量:222
  • 5李书臣,李平,徐心和,胡玉娥.迭代学习控制理论现状与展望[J].系统仿真学报,2005,17(4):904-908. 被引量:8
  • 6Yan Wang, Yong-ling Fu. Fuzzy adaptive iterative learning control algorithm [ C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006.

二级参考文献23

共引文献228

同被引文献76

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部