期刊文献+

一类非线性发展方程的全局解的存在性(英文) 被引量:3

Global Attractors for a Class of Nonlinear Evolution Equations
在线阅读 下载PDF
导出
摘要 本文证明了一类非线性发展方程全局解的存在性,并证明适当假设下,当非线性项满足临界指数增长条件时,方程具有紧吸引子。 In this article,we prove the existence of global solutions for a class of nonlinear evolution equations in H10(Ω)×H10(Ω).Moreover we study the long-time behavior of the solutions.It is proved that under the natural assumptions,these equations possess the compact attractors,where the nonlinear term f satisfies a critical exponential growth condition.
出处 《数学理论与应用》 2010年第4期13-19,共7页 Mathematical Theory and Applications
基金 国家自然科学基金(No.10571178)资助
关键词 非线性发展方程 全局解 全局吸引 临界指数 Nonlinear evolution equation Global solutions Global attractor Critical exponential
  • 相关文献

参考文献11

  • 1I.L. Bogolubsky, Some examples of inelastic soliton interaction [ J ]. Commputer Physics Communications 1977, 13,149 - 155.
  • 2P.A. Clarkson, R.J. Leveque and R.A. Saxton, Solitary - wave interaction in elastic rods [ J ]. Studies in Applied Mathematics, 1986, [ J] ,95 - 122.
  • 3C.E. Seyler and D.L. Fanatermaeher, A symmetric regularized long wave equation[J]. Phys Fluids,1984,27 (1), 58-66.
  • 4W.G. Zhu, Nonlinear waves in elastlc rods[J].Acta Solid Mechanica Sinica,1980,1(2) ,247 -253.
  • 5R. Teman, Infinite dynamical system in mechanics and physics[ M]. Springer- Verlag, New York, 1997.
  • 6G.R. Sell and Y. You, Dynamics of evolutionary equations [ M ]. Springer Verlag, New York, 2002.
  • 7H.W. Zhang and Q.Y. Hu, Existence of global weak solution and stability of a class nonlinear evolution equation [ J ]. Acta Mathematica Scientia,2004,24A (3) ,329 - 336.
  • 8V. Pata, M. Squassina On the strongly damped wave equation [J].Communications in Mathematical Physics, 2005,253 (3) ,511 - 533.
  • 9V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations[J]. Nonlinearity,2006,19,1495 - 1506.
  • 10Y.Q. Xie, C.K. Zhong, Tile existence of global attractors for a class nonlinear evolution equation [ J ]. J. Math. Anal. Appl, 2007,336,54-69.

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部