期刊文献+

基于近红外光谱和偏最小二乘法的慈竹纤维素结晶度预测研究 被引量:28

Determination of Crystallinity in Neosinocalamus affinins Based on Near Infrared Spectroscopy and PLS Methods
在线阅读 下载PDF
导出
摘要 将近红外光谱技术和化学计量学相结合分析慈竹纤维素结晶度。通过区间偏最小二乘法(iPLS)、联合区间偏最小二乘法(siPLS)和反向区间偏最小二乘法(biPLS)优化建模区域,建立经多元散射校正后光谱的结晶度分析模型,并与全光谱范围350~2 500nm建立的偏最小二乘(PLS)模型进行比较。结果表明,三种改进偏最小二乘法建立的结晶度模型预测效果均优于PLS模型,并且当采用联合区间偏最小二乘法将全光谱进行30个子区间划分,选择三个子区间[8 12 19]组合时,建立的siPLS模型预测效果最好,相关系数(r)达到0.88,预测标准差(RMSEP)为0.0117。因此,采用联合区间偏最小二乘法可以有效选择建模光谱区域,提高模型预测能力,实现慈竹纤维素结晶度的快速预测。 Near infrared spectroscopy technique combined with chemometrics methods was applied to predict crystallinity of Neosinocalamus affinins.Three improved partial least squares(PLS) methods,including interval partial least squares(iPLS),synergy interval partial least squares(siPLS) and backward interval partial least squares(biPLS),were used to find the most informative ranges and build models with better predictive quality based on multiplicative scatter correction spectra.And then the models were compared with PLS model which was developed on the whole wavelength range 350~2 500 nm.The results showed that the models built by the three improved PLS methods had higher predictive ability than that of PLS model,and the optimal model was obtained by siPLS method that separated the whole spectra into 30 intervals and combined three intervals.The siPLS model had correlation coefficient(R) of 0.88 and root mean standard error of prediction(RMSEP) of 0.011 7.Therefore,through selecting the effective wavelength range,siPLS method could accurately and rapidly predict crystallinity in Neosinocalamus affinins.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第2期366-370,共5页 Spectroscopy and Spectral Analysis
基金 国家"十一五"科技支撑计划项目(2006BAD19B0704)资助
关键词 近红外光谱 联合区间偏最小二乘法 慈竹 结晶度 Near infrared spectroscopy Synergy interval partial least squares Neosinocalamus affinins Crystallinity
  • 相关文献

参考文献6

二级参考文献39

共引文献44

同被引文献284

引证文献28

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部