期刊文献+

(Pr_(1-x)Nd_x)_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_(3-δ)体系双稀土阴极材料的氧化学扩散系数及电学性能的研究 被引量:1

Investigation on oxygen chemical diffusion coefficient and electrical properties of (Pr_(1-x)Nd_x)_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_(3-δ) system with two rare earths for cathodes
在线阅读 下载PDF
导出
摘要 采用固相反应法合成了(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ(x=0.2、0.4、0.6、0.8)钙钛矿氧化物系样品,采用XRD分析物相结构,采用XPS分析化学状态,用电导弛豫法研究了(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ系样品的氧化学扩散性能。实验结果表明,(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ体系样品的氧化学扩散系数Dchem随温度的升高、Nd含量的增加而上升,电导率随氧分压的增大而增大;样品(Pr0.2Nd0.8)0.6Sr0.4Co0.8Fe0.2O3-δ氧扩散系数最大,在800℃时达到6.75×10-5cm2/s;样品(Pr0.2Nd0.8)0.6Sr0.4Co0.8Fe0.2O3-δ在600℃下氧分压为1.0×105Pa时电导率达到最大值为1318.138S/cm,是比较理想的固体氧化物燃料电池的阴极材料。 Perovskite oxides of(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ(x=0.2,0.4,0.6,0.8) samples were obtained by solid state-reaction method.Its phase structures and chemistry state were analysed by X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS).The oxygen chemical diffusion coefficient of(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ was determined by electrical conductivity relaxation technique.The resultes show that the conductivity of(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ increases with increasing of oxygen partial pressure.The(Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ samples have higher oxygen chemical diffusion coefficient,which increase with the increasing of temperature and increasing of content Nd.The oxygen chemical diffusion coefficient was highest at x=0.8,which achieved 6.75×10-5cm2/s at 800℃.The max conductivity of the specimen of(Pr0.2Nd0.8)0.6Sr0.4Co0.8Fe0.2O3-δ is 1318.138S/cm at 600℃,1.0×105Pa oxygen partial pressure,is comparatively potential cathodes material for intermediate temperature solid oxide fuel cells.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第1期5-9,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(10464001) 内蒙古高校自然科学基金重点资助项目(NJ09002)
关键词 (Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ 氧化学扩散 钙钛矿氧化物 电导弛豫 (Pr1-xNdx)0.6Sr0.4Co0.8Fe0.2O3-δ oxygen chemical diffusion coefficient perovskite oxides electrical conductivity relaxation technique
  • 相关文献

参考文献18

  • 1Ding Tiezhu, Li Jian, Qi Qige, et al. [J].Journal of Rare Earths, 2003,21 (4) : 453.
  • 2Ding T Z,Wang Y M,Shi S H. [J]. Materials Science Letters,2003,22(1):1.
  • 3Bouwmeester H J M,Den Otter M W, Boukamp B A. [J]. Solid State Electrochem, 2004,8: 599.
  • 4Atkinson A,Chater R J, Rudkin R. [J]. Solid State Ionics, 2001,139 : 233.
  • 5Lane J A,Benson S J,Waller D,et al. [J]. Solid State Ionies, 1999,121: 201.
  • 6tenElshof J E, Lankhorst M H R,Bouwmeester H J M. [J]. Solid State Ionics, 1997,99 : 15.
  • 7Wen T L,Tu H,Xu Z,et al. [J]. Solid State Ionics,1999, 121:25.
  • 8Liu Mingfei, Dong Dehua, Chen Lei, et al. [J]. Power Sources, 2008,176 : 107.
  • 9Tu H Y,Takeda Y,Imanishi N.[J]. Solid State Ionics, 1999,117(3-4) :227.
  • 10范文亮,丁铁柱,潮洛蒙,张磊,闫祯,王晓波.A位置复合掺杂对钙钛矿氧化物(La_(1-x)Pr_x)_(2/3)Sr_(1/3)Co_(0.8)Ni_(0.2)O_3化学扩散系数的影响[J].功能材料,2009,40(4):570-573. 被引量:2

二级参考文献13

  • 1Tietz F, Arul Raj I, Zahid M, et al. [J]. Solid State Ionices,2007, 177: 1753-1756.
  • 2Ma B, Balachandran U, Park J H, et al. [J]. Solid State Ionics,1996, 83: 65-71.
  • 3Minh N Q. [J]. Solid State lonics, 2004, 174:271.
  • 4Kobayashi T, Watanabe H, Hibino M, et al. [J]. Solid State Ionics, 2005, 176: 2439-2443.
  • 5Mineshige A, Izutsu J, Nakamura M, et al. [J]. Solid State Ionics, 2005, 176: 1145-1149.
  • 6Kishimoto H, Sakai N, Horita T, et al. [J]. Solid State Ionics, 2007, 178: 1317-1325.
  • 7Diethelm S, Van herle J. [J]. Journal of the European Ceramic Society, 2004, 24:1319-1323.
  • 8Yasuda I, Hishinuma M. [J] . Journal of Solid State Chemistry, 1996, 123: 382-390.
  • 9Yasuda I, Hishinuma M. [J]. Solid State Ionics, 1995, 80: 141-150.
  • 10Preis W, Bueher E, Sitte W. [J]. Solid State Ionics, 2004, 175: 393-397.

共引文献1

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部