期刊文献+

比例延迟微分方程线性多步法的散逸性 被引量:2

Dissipativity of Linear Multistep Methods for Delay Differential Equations with a Proportional Delay
在线阅读 下载PDF
导出
摘要 考虑了比例延迟微分方程的数值方法的散逸性,把一类线性多步法应用到以上问题中,得到了该数值方法的散逸性结果。 This paper is concerned with numerical dissipativity of the delay differential equations with a proportional delay,the dissipativity results was obtained by a class of linear multistep methods when they are applied to above problems.
作者 祁锐 何汉林
出处 《舰船电子工程》 2010年第12期73-74,129,共3页 Ship Electronic Engineering
基金 国家自然科学基金项目(编号:60974136) 海军工程大学自然科学基金青年项目(编号:HGDQNJJ10003)资助
关键词 比例延迟微分方程 线性多步法 散逸性 delay differential equations with a proportional delay linear multistep methods dissipativity
  • 相关文献

参考文献7

  • 1文立平,余越昕,李寿佛.一类求解分片延迟微分方程的线性多步法的散逸性[J].计算数学,2006,28(1):67-74. 被引量:16
  • 2Humphries A R,,Stuart A M.Model problems in nu-merical stability theory for initial value problems. SIAM Review . 1994
  • 3Xiao A.On thesolvability of General linear methods for dissipativity dynamical systems. Journal of Computational and Applied Mathematics . 2000
  • 4Siqing Gan.Dissipativity ofθ-methods for nonlinear Volterra delay-integro-differential equations. Journal of Computational and Applied Mathematics . 2007
  • 5Siqing Gan.EXACT AND DISCRETIZED DISSIPATIVITY OF THE PANTOGRAPH EQUATION[J].Journal of Computational Mathematics,2007,25(1):81-88. 被引量:12
  • 6Humphries A R,Stuart A M.Runge-Kutta methods for dissipative and gradient dynamical systems. SIAM Journal on Numerical Analysis . 1994
  • 7Tian H.J.Numerical and analytic dissipativity of the method for delay differential equation with a bounded variable lag. International Journal of Bifurcation and Chaos . 2004

二级参考文献15

  • 1LI Shoufu.Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces[J].Science China Mathematics,2005,48(3):372-387. 被引量:20
  • 2范利强,张媛颖,项家祥,田红炯.滞时微分方程二级θ-方法的数值耗散性(英文)[J].系统仿真学报,2005,17(3):599-600. 被引量:2
  • 3R.Temam,Infinite-dimensional dynamical systems in mechanics and physics,Springer applied mathematical sciences series 68(1988),Berlin:Springer.
  • 4A.R.Humphries and A.M.Stuart,Runge-Kutta methods for dissipative and gradient dynamical systems,SIAM J.Numer.Anal,31(1994),1452-1485.
  • 5A.T.Hill,Global dissipativity for A-stable methods,SIAM J.Numer.Anal,34(1997),119-142.
  • 6A.T.Hill,Dissipativity of Runge-Kutta methods in Hilbert spaces,BIT,37(1997),37-42.
  • 7C.M.Huang,Dissipativity of Runge-Kutta methods for dynamical systems with delays,IMA J.Numer.Anal,20(2000),153-166.
  • 8C.M.Huang,Dissipativity of one-lag methods for dynamical systems with delays,Appl Numer.Math,35(2000),11-22.
  • 9H.J.Tian,Numerical and analytic dissipativity of the θ-method for delay differential equation with a bounded variable lag,International Journal of Bifurcation and Chaos,14(2004),1839-1845.
  • 10K.L.Cooke,J.A.Wiener,Retarded differential equations with piecewise constant delays,J.Math.Anal.Appl,99(1984),265-297.

共引文献24

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部