期刊文献+

BP神经网络在机床故障诊断应用中的改进 被引量:6

Improvement on Application of BP Neural Network in Machine Tool's Fault Diagnosis
在线阅读 下载PDF
导出
摘要 在分析了传统BP神经网络缺点的基础上,对其进行了改进。学习因子按照所设计的函数进行动态调整,增加了势态项,并在激活函数中加入了陡峭因子。将改进的BP神经网络与传统BP神经网络进行了对比,验证了改进BP神经网络的有效性,适合数控机床的故障诊断。 On the base of analyzing the traditional BP neural network's disadvantages,improvement method is given.Learning factor is dynamically adjusted according to the designed function,momentum term is added,sharpness factor is added in activation function.The improved BP neural network is compared with traditional BP neural network,the improved BP neural network's validity is verified and is suitable for NC machine's fault diagnosis.
出处 《制造技术与机床》 CSCD 北大核心 2011年第2期70-72,共3页 Manufacturing Technology & Machine Tool
基金 国家科技重大专项(2009ZX04014-014)
关键词 BP神经网络 数控机床 故障诊断 BP Neural Network NC Machine Fault Diagnosis
  • 相关文献

参考文献5

二级参考文献35

  • 1颜延虎,钟秉林,黄仁,万德均.神经网络技术及其在旋转机械故障诊断中的应用[J].振动工程学报,1993,6(3):205-212. 被引量:24
  • 2HSIEH L-H, CHANG K. Slow-wave bandpass filters using ring or stepped-impedance hairpin resonators [ J ]. IEEE Trans Microwave Theory Tech, 2002, 50 ( 12 ) : 1795-1800.
  • 3BLONDYD C P, BROWN A R, CROS D, et al. Lowloss micro machined filters for millimeter-wave communication systems [ J ]. IEEE Trans. Microwave Theory Tech ,2003,46 ( 6 ) : 2283-2288.
  • 4SAGAWA M, TAKAHASHI K, MAKIMOTO M Miniaturized haipin resonator filters and their application to receiver front-end MIC's[ J]. IEEE Trans Microwave Theory Tech. , 1989,37(12) : 1991-1996.
  • 5LI X P, GAO J J, YOOK J-G, et al. Bandpass filter design by artificial neural network modeling [ C ]. Microwave Conference Proceedings, Suzhou, 2005:6-9.
  • 6KHOA N L D, SAKAKIBARA K, NISHIKAWA I. Stock Price Forecasting using Back propagation neural networks with time and profit based adjusted weight factors [ C ]. International Joint Conference, Busan, South Korea , 2006:5484-5488.
  • 7HU X L, WANG J. Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems [ J ]. IEEE Transaction on System, Man, and Cybernetics Part B, 2007, 37 (5):1414-1421.
  • 8NAWI N M, RANSING R S, RANSING M R. A new method to improve the gradient based search direction to enhance the computational efficiency of back propagation based Neural Network algorithms [ C ]. Second Asia In- ternational Conference on Modeling & Simulation, Kuala Lumpur, Malaysia, 2008: 549-551.
  • 9BISHO P C M. Neural networks for pattern recognition [ M ]. Oxford : Oxford University Press, 1995 : 15-63.
  • 10KRUSCHKE J K, MOVELLAN J R. Benefits of gain: Speeded learning and minimal hidden layers in backpropagation networks [ J ]. IEEE Transaction on System, Man, and Cybernetics, 1991, 21 ( 1 ) : 273-280.

共引文献61

同被引文献55

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部