期刊文献+

二氧化硅介质柱构成的8重准晶结构光子晶体的传输特性 被引量:2

Photonic band gap properties of 8-fold photonic quasicrystals in silica
在线阅读 下载PDF
导出
摘要 采用时域有限差分法讨论了由二氧化硅介质柱构成的8重准晶结构光子晶体的带隙特性。数值模拟结果表明,该结构的光子晶体对TM模存在较宽的光子带隙,而对TE模不存在光子带隙;光子带隙的中心频率随着填充因子的增大向低频方向移动;相对带隙宽度随着填充因子的增大呈现先增大后减小的趋势,并在填充因子r/a为0.29时存在最大值,该带隙可以覆盖1.55μm附近44nm的宽度或1.31μm附近37nm的宽度,足以用于设计和制作准晶结构的光子晶体光纤等光通信器件;光子带隙的位置和宽度均与入射光的方向无关,带隙的这种各向同性使基于该结构的新型器件的制作有更大的设计自由度。 We present a numerical study of photonic band gap properties of 8-fold photonic quasi-periodic lattice composed of silica rods using FDTD.Simulated transmission plots are shown for various fill factors,propagation angles and light polarization.Results indicate that r/a=0.29 in TM polarization is the best choice;the central frequency shifts to low frequency as r/a increases;the band gaps are relatively independent on propagation angles.Moreover,the band gap of 8-fold PQC can cover 44nm around 1.55μm or 37nm around 1.31μm.These results provide important information to realize optical components based on octagonal photonic quasicrystal in silica.
出处 《激光杂志》 CAS CSCD 北大核心 2010年第6期44-45,共2页 Laser Journal
基金 广东省自然科学基金(批准号:04010398)资助的课题 国家教育部留学回国人员科研启动基金项目
关键词 准晶 光子晶体 带隙特性 时域有限差分法 quasicrystals photonic crystals photonic bandgap property FDTD method
  • 相关文献

参考文献12

  • 1温清凌,谢应茂.部分无序二维光子晶体透射特性研究[J].激光杂志,2010,31(1):34-35. 被引量:3
  • 2陈世坤,葛文萍.单分散性sio_2胶体微球自组装光子晶体的实验研究[J].激光杂志,2010,31(1):22-24. 被引量:3
  • 3J. R. Vivas, D. N. Chigrin, A. V. Lavrinenko, et al. Resonant add - drop filter based on a photonic quasicrystal[J]. Opt. Express, 2005, 13 : 826 - 835.
  • 4D.T. Roper, D. M. Beggs, M. A. Kaliteevski, et al. Properties of two - dimensional photonic crystals with octagonal quasicrystalline unit cells [J].J. Mod. Opt, 2006,53:407 - 416.
  • 5M. A. Kaliteevski, S. Brand, R. A. Abram, et al. Two - dimensional Penrose- tiled photonic quasicrystals diffraction of light and fractal density of modes[J]. J. Mod. Opt, 2000,47 : 1771 - 1778.
  • 6M. E. Zoorob, M. D. B. Charhon, G. J. Parker, et al. Complete photonic bandgaps in 12 - fold symmetric quasicrystals[J].Nature, 2000,404:740 - 743.
  • 7X. Zhang, Z. Q. Zhang and C. T. Chang. Absolute photonic band gaps in 12 - fold symmetric photonic quasicrystals[J]. Phys. Rev. B, 2001,63:081105 - 1 - 081105 - 4.
  • 8Z. Feng, X. Zhang, Y. Q. Wang, et al. Negative refraction and imaging using 12 - fold symmetry quasicrystals[J]. Phys. Rev. Lett., 2005,94 (24) :247402 - 1 - 4.
  • 9X. Zhang. Negative refraction and focusing of electromagnetic wave through two - dimensional photonie crystals [ J]. Front. Phys. China, 2006,4:396-404.
  • 10K. Nozaki and T. Baba. Quasiperiodic photonic crystal microcavity lasers[J]. Appl. Phys.Lett, 2004,84 (24) : 4875 - 4877.

二级参考文献28

  • 1许丕池,李小甫,余海湖,姜德生.SiO_2静电自组装增透膜光学性质的研究[J].光学与光电技术,2003,1(1):61-64. 被引量:4
  • 2高旸.光子晶体应用分析[J].中国科技信息,2007(15):275-276. 被引量:4
  • 3谢应茂.光子晶体中层厚的非关联高斯随机分布对透射谱的影响[J].赣南师范学院学报,2007,28(3):27-30. 被引量:3
  • 4Eli Yablonovitch. Inhibited spontaneous emission in solid - state physics and electronics[J] .Phys. Rev. Lett., 1987, 58 (20) :2059 - 2062.
  • 5Sajeev John. Strong lecalization of photons in certain disordered dielectric superlattices[J] .Phys. Rev. Lett., 1987,58(20):2486- 2489.
  • 6Graham T.T. Gibson, Terr B. Koemer, Ruixi Xie. Entrapment of functian alized silica microspheres with photo - initiated acrylate - based polymers[ J]. Journal of Colloid and Interface Science, 2008, 320:82 - 90.
  • 7Marek Orlik. Self- organization in nonlinear dynamical systems and its relation to the materials seience[J]. Solid State Electroehem, 2009,13 (2) :245 - 261.
  • 8Wen- jiang LI. Preparation of movable 3D periodic structures of silica spheres[ J]. Zhejiang university science A., 2006,7(Suppl II) : 345 - 349.
  • 9E. Yablonovitch, Inhibited spontaneous emission in solid - state physics and electronics[ J]. Phys. Rev. Letts, 1987,58: 2059.
  • 10S. John. Strong Localization of Photons in certain Disordered Dielectric SuperLattice[J]. Phys. Rev. Lefts, 1987,58: 2486.

共引文献4

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部