期刊文献+

洪灾被困人员搜救的模糊定位-路径问题优化模型 被引量:3

Optimization model of fuzzy location-routing problem for searching trapped personnels in flood disaster
原文传递
导出
摘要 为保障洪灾被困人员搜救效果,分析了救援过程的特性,建立了一个带时间窗和模糊搜救时间的定位-路径问题优化模型,并提出一种遗传求解算法,采取三段式实数编码,设计了与编码相应的交叉和变异操作,在迭代过程中添加替代操作以加快收敛速度,最后对模型及算法进行了验证。研究结果表明:采用MATLAB编程实现该算法时,将程序运行10次,平均运行时间为42.95 s,最差解和最好解与平均值的偏差仅分别为1.56%和3.48%。可见,算法是高效、收敛和稳定的,模型可行。 For ensuring the search-and-rescue effect of trapped personnel in flood disaster,the characteristics of rescue process were analyzed,an optimization model of location-routing problem(LRP) with time windows and fuzzy rescue time was established,and a genetic algorithm was introduced.The algorithm used three-segment real-code and designed matching crossover and mutation operations,and a replacement operation was added in the iterative process to accelerate convergence.A numerical example was given to validate the model and the algorithm.Analysis result shows that the average running time of ten times is 42.95 s when a MATLAB program is designed to realize the algorithm,and the deviations of the worst and the best to the average value are 1.56% and 3.48% respectively.So the algorithm is efficient,convergent and stable,and the model is feasible.5 tabs,3 figs,15 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2010年第6期88-93,共6页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(70771094) 高等学校博士学科点专项科研基金项目(20090184110029) 中国博士后科学基金项目(20090450637) 四川省青年科技基金项目(09ZQ026-021) 西南交通大学科技发展基金项目(2007A01)
关键词 物流工程 洪灾 定位-路径问题 改进遗传算法 模糊时间 时间窗 logistics engineering flood disaster location-routing problem improved genetic algorithm fuzzy time time window
  • 相关文献

参考文献15

二级参考文献113

共引文献302

同被引文献51

  • 1杨双鹏,郭秀萍,高娇娇.无接触式“卡车+无人机”联合配送问题研究[J].工业工程与管理,2022,27(1):184-194. 被引量:16
  • 2任学慧,王月.滨海城市旅游安全预警与事故应急救援系统设计[J].地理科学进展,2005,24(4):123-128. 被引量:52
  • 3Haghani A, Oh S C. Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations[J].Transportation Research Part A: Policy and Practice, 1996, 30(3):231-250.
  • 4Barbarosoglu G, Arda Y. A two-stage stochastic pro- gramming framework for transportation planning in dis- aster response[J]. Journal of the Operational Research Society, 2004, 55(1): 43-53.
  • 5Yuan Yuan,Wang Dingwei. Path selection model and al- gorithm for emergency logistics management[J]. Com- puter & Industrial Engineering, 2009, 56(3): 1081- 1094.
  • 6Sheu J B. Dynamic relief-demand management for emer- gency logistics operations under large-scale disasters [J]. Transportation Research Part E, 2010, 46(1): 1 -17.
  • 7Yi Wei, Ozdamar L. A dynamic logistics coordination model for evacuation and support in disaster response activities [J]. European Journal of Operational Re- search, 2007, 179(3): 1177-1193.
  • 8Deb K, Agrawal S, Pratap A, et al. A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization: NSGA-II [J]. Lecture Notes in Comput- er Science, 2000, 1917: 849-858.
  • 9Deb K, Pratap A, Agrawal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197.
  • 10Ferguson D. GIS for wilderness search and rescue[R].Washington D. C.: ESRI Federal User Conference, 2008.

引证文献3

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部