期刊文献+

不同曳力模型对鼓泡床内气固两相流的模拟研究 被引量:14

A Simulation Study of Gas-Solid Two Phase Flow in a Bubbling Fluidized Bed with Various Drag Force Models
在线阅读 下载PDF
导出
摘要 基于双流体模型,应用Fluent商业软件包对带有单喷嘴的二维鼓泡床中气固两相流进行模拟研究。采用三种基于不同机理的曳力模型;半经验的Gidaspow模型、由格子波尔兹曼方法导出的Koch-Hill模型与修正的半经验的McKeen模型,通过模拟气泡的形成、上升及破裂过程,气泡形状和颗粒运动特征,计算气体泄漏率、气泡直径及气泡上升速度,对不同曳力模型进行比较研究,其中编程实现了Koch-Hill和McKeen曳力模型模块。通过与文献中的实验结果进行对比发现,Gidaspow模型对气泡形状的模拟效果较好,与实验数据的误差介于其他两种模型之间;Koch-Hill模型捕捉到的气泡特征最逼真,且床层膨胀效果明显,但定量计算的误差最大;而McKeen模型与实验数据的误差最小,但对气泡形状的模拟效果较差。 Characters of gas-solid two phase flow in a two-dimensional bubbling fluidized bed with a central jet was simulated numerically based on two-fluid model by Fluent commercial software package. Three types of drag force models which were built on different mechanisms, Gidaspow model, Koch-Hill model and McKeen model, were adopted to make a comparison study through observing the bubble formation, rise and split process, calculating gas leakage ratio, equivalent bubble diameter and bubble rise velocity. The Koch-Hill model based on Lattice-Boltzmann Method (LBM) and modified semi-empirical McKeen model were written especially by authors. By comparing with the experimental data in literature, it was shown that Gidaspow drag force model performed well characters of bubbling behavior and moderate characters of bubbling behavior, but its average MeKeen model was the least, while the bubbling average deviation. Koch-Hill model catched best deviation was the largest. Average deviation with behavior which catched was not so well as other two models.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2010年第5期390-398,共9页 Chemical Reaction Engineering and Technology
基金 国家教育部回国人员科研启动基金(教外司留2008-890-10)
关键词 曳力模型 双流体模型 气固两相流 鼓泡流化床 drag force model two fluid model gas-solid two phase flow bubbling fluidized bedl
  • 相关文献

参考文献25

  • 1李光,杨晓钢,戴干策.鼓泡塔反应器内两相流动态模拟研究[J].化学反应工程与工艺,2008,24(3):220-227. 被引量:4
  • 2Leboreiro J, Joseph G G, Hrynya C M. Revisiting the Standard Drag Law for Bubbling Gas-Fluidized Beds. Powder Technology, 2008, 183 (3): 358-400.
  • 3Gerlach D, Alleborn N, Buvra V, et al. Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice with Constant Gas Flow Rate. Chemical Engineering Science, 2007, 62 (4): 2109-2125.
  • 4Gidaspow D. Multiphase Flow and Fluidization. San Diego: Academic Press, 1994.
  • 5Deen N G, van Sint Annaland M, van der Hoef M A, et al. Review of Discrete Particle Modeling of Fluidized Beds. Chemical Engineering Science, 2007, 62 (1-2): 28-44.
  • 6Ge W, Li J H. Macro-Scale Phenomena Reproduced in Microscopic Systems-Pseudo-Particle Modeling of Fluidization. Chemical Engineering Science, 2003, 58 (8): 1565-1585.
  • 7Nieuwland J J, Kuipers J A M, van Swaaij W. Hydrodynamic Modeling of Gas/Particle Flows in Riser Reactors. AIChE Journal, 1996, 42 (6): 1569-1583.
  • 8Samuelsberg A, Hjertager B. An Experimental and Numerical Study of Flow Patterns in a Circulating Fluidized Bed Reactor. International Journal of Multiphase Flow, 1996, 22 (3) : 575-591.
  • 9van Wachem B G M, Schouten J C, van den Bleek C M. Comparative Analysis of CFD Models of Dense Gas-Solid Systems. AIChE Journal, 2001, 47 (5): 1035-1051.
  • 10Wang W, Li J H. Simulation of Gas-Solid Two-Phase Flow by a Multi-Scale CFD Approach-Extension of the EMMS Model to the Sub-Grid Level. Chemical Engineering Science, 2007, 62 (1-2): 208-231.

二级参考文献1

共引文献3

同被引文献107

引证文献14

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部