期刊文献+

基于灰色模型和RBF神经网络的MEMS陀螺温度补偿 被引量:25

Temperature compensation of MEMS gyroscope based on grey model and RBF neural network
在线阅读 下载PDF
导出
摘要 MEMS陀螺的零偏随温度呈非线性变化,同时含有较大的随机噪声。针对传统的多项式模型难以精确表达零偏随温度变化的问题,提出了一种基于灰色模型和RBF神经网络的MEMS陀螺温度补偿方法:首先用灰色模型对数据进行预处理,以减小原始数据的噪声;然后用降噪后的样本数据对RBF神经网络进行训练。在相同的训练次数下训练误差可减小一个数量级。验证试验结果表明,采用该模型补偿后的陀螺零偏误差较传统的多项式模型减小一个数量级,较未经预处理的RBF神经网络减小2/3。 The zero bias of MEMS gyroscope exhibits nonlinear change with varying temperature and contains significant stochastic error.In view that traditional polynomial method could not accurately establish the relationship between the temperature and the zero bias,this paper puts forward a hybrid model based on grey model theory and RBF neural network.First,it pre-processes the gyro output using the grey model to reduce the noise.Then it uses the processed sample data to train the RBF network,so the training errors are reduced by one magnitude within the same training times.The verification experiments indicate that compared with traditional polynomial model and untreated RBF neural network,the compensated gyro zero bias error is reduced by one order of magnitude and 2/3 respectively.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2010年第6期742-746,共5页 Journal of Chinese Inertial Technology
基金 天津市科技支撑重点项目(08ZCKFGX04000)
关键词 MEMS陀螺 灰色模型 RBF神经网络 温度补偿 MEMS gyroscope grey model RBF neural network temperature compensation
  • 相关文献

参考文献9

  • 1潘华,李安,胡柏青.BP混沌混合神经网络在光纤陀螺温度漂移预测中的应用[J].中国惯性技术学报,2006,14(6):73-75. 被引量:6
  • 2Liu Dachuan,Chi Xiaozhu,Cui Jian,et al.Research on temperature dependent characteristics and compensation methods for digital gyroscope[C] // 3rd International Conference on Sensing Technology.Tainan,Taiwan,Nov.30-Dec.3,2008,:273-277.
  • 3张鹏飞,龙兴武.机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J].宇航学报,2006,27(3):522-526. 被引量:20
  • 4陈殿生,邵志浩,雷旭升,王田苗.基于递阶遗传RBF网络的MEMS陀螺温度补偿[J].中国机械工程,2009(17):2063-2066. 被引量:2
  • 5伏玉笋,田作华,施颂椒,任思聪,滕玉琨.灰色系统理论、数据预处理及其应用[J].上海交通大学学报,2001,35(2):268-271. 被引量:19
  • 6Yu Zhun,Jing You-Yin,Xie Ying-Bai,et al.Applying radial basis function neural network to data fusion for temperature compensation[C] //.Proceedings of the Fifth International Conference on Machine Learning and Cybernetics.Dalian,13-16 August 2006:3177-3180.
  • 7Huang Guang-Bin,Saratchandrah P J,Sundararajan N.A recursive growing and pruning RBF(GAP-RBF) algorithm for function approximations[C] // Proceedings of the 4th International Conferences on Control and Automation,2003:491-495.
  • 8Zhang Qintuo,Tan Zhenfan,Guo Lidong.Compensation of temperature drift of MEMS gyroscope using BP neural network[C] // International Conference on Information Engineering and Computer Science,2009:1-4.
  • 9Fang Jiancheng,Li Jianli.Integrated model and compensation of thermal errors of silicon microelectromechanical gyroscope[C] // IEEE Transactions on Instrumentation and Measurement Society,Sept.2009:2923-2930.

二级参考文献25

共引文献43

同被引文献141

引证文献25

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部