期刊文献+

基于小波变异的粒子群算法 被引量:4

Particle swarm optimization based on wavelet mutation
在线阅读 下载PDF
导出
摘要 PSO算法对复杂函数有较强的寻优能力和收敛速度快等特点,但是它依然无法保证在搜索空间中找到全局最优点。针对粒子群算法易于陷入局部最小的弱点,提出了一种基于小波变换的粒子群算法。该算法使用全局变异因子使粒子具有了良好的全局搜索能力,同时使用了局部变异因子,使算法在搜索过程中具有较高的收敛速度。典型函数优化的仿真结果表明,该算法具有寻优能力强、搜索精度高、稳定性好等优点,适合于工程应用中的函数优化问题。 in spite of PSO has comparable or even superior search perforrnance for many hard optimization problems with faster and more stable convergence rates, but it can' t guarantee to find the global optima in the search space. To conquer the shortcoming of particle swarm optimization, a novel particle swarm optimization based wavelet function (WPSO) is introduced. The algorithm first uses a global mutation operator which makes the particle have excellent ability of search in a global scope. Furthermore, for improving the searching ability in local area, the algorithm uses the local mutation operator which makes the algorithm behaves well in local searching. Experimental simulations shows that the proposed algorithm has powerful optimizing ability, good stability and higher optimizing precision, so it can be applied in optimization problems.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第2期693-695,699,共4页 Computer Engineering and Design
基金 中国博士后科学基金项目(20090460323)
关键词 粒子群 小波 变异 全局搜索 收敛速度 particle swarm optimization wavelet mutation global searching convergence rate
  • 相关文献

参考文献12

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc IEEE Int Conf Neural Networks. Perth: IEEE Press, 1995: 1942-1948.
  • 2Pappala V S,Erlich I,Rohrig K,et al.A stochastic modal for the optimal operation of a wind-thermal power system [J]. IEEE Trans Power Syst,2009,24(2):940-950.
  • 3张长胜,孙吉贵,欧阳丹彤,张永刚.求解车间调度问题的自适应混合粒子群算法[J].计算机学报,2009,32(11):2137-2146. 被引量:25
  • 4Singh D S. Optimal rescheduling of generators for congestion management based on particle swarm optimization [J]. IEEE Trans Power System,2008,23(4): 1560-1560.
  • 5Daniel Bratton,James Kennedy.Defining a standard for particle swarm optimization [C]. Honolulu, USA: Proceedings of IEEE Swarm Intelligence Symposium(SIS),2007:120-127.
  • 6Hiqushi N,Iba H.Particle swarm optimization with Gaussian mu- tation[C].IEEE Conf Swam Intelligence Symposium(SIS),2003: 7-79.
  • 7Andrews P S.An investigation into mutation operators for par- ticle swarm optimization[C].IEEE Conf on Evolutionary Com- putation,2006:1044-1051.
  • 8Wang H,Liu Y.A hybrid particle swarm algorithm with cauchy mutation[C].IEEE Conf Swarm Intelligence Symposium(SIS), 2007:356-360.
  • 9Wang H,Liu Y, Wu Z,et al.An improved particle swarm optimiza- tion with adaptive jumps[C].IEEE Conf on Evolutionary Com- putation,2008:392-397.
  • 10Rui Mendes.Population topologies and their influence in particle swarm performance[D].University of Minho,2004.

二级参考文献10

  • 1Yang Qing-Yun,Sun Ji-Gui,Zhang Ju-Yang et al.Ahybrid discrete particle swarm algorithmfor open-shop problems[].Proceedings of theth International Conference on Si mulated Evolution and Learning(SEAL).2006
  • 2Rameshkumar K,Suresh R K,Mohanasundaram K M.Dis-crete particle swarmopti mization(DPSO)algorithmfor per-mutation flowshop scheduling to mini mize makspan[].Pro-ceedings of the ICNC.2005
  • 3Van den Bergh F.An Analysis of Particle Swarm Optimizers[]..2002
  • 4Taillard E.Some efficient heuristic methods for the flow shop sequencing problem[].European Journal of Operational Research.1990
  • 5Garey MR,Johnson DS,Sethi R.The complexity of flowshop and jobshop scheduling[].Mathematics of Operations Research.1976
  • 6Valente,J. M. S.,Alves,R. A. F. S.An exact approach to early/tardy scheduling with release dates[].Computers and Operations Research.2005
  • 7Gangadharan,R.,Rajendran,C.Heuristic algorithms for scheduling in the no-wait flowshop[].International Journal of Production Economics.1993
  • 8Aldowaisan,T,Allahverdi,A.New heuristics for no-wait flowshops to minimize makespan[].Computers and Operations Research.2003
  • 9LIAN Zhi-gang,GU Xing-sheng,JIAO Bin.Asimilar particle swarm optimization algorithm forpermutation flowshop scheduling to minimizemakespan[].Applied Mathematics andComputation.2006
  • 10C.N.Andreas.The effect of various operators on the genetic search for large scheduling problems[].International Journal of Production Economics.2004

共引文献24

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部