期刊文献+

基于压力补偿原理的抛光面形快速收敛技术 被引量:3

Fast correcting technique of polishing surface form by pressure compensation
在线阅读 下载PDF
导出
摘要 为解决强激光系统中大口径光学元件抛光面形精度收敛困难的问题,提出了一种基于压力补偿原理的抛光面形快速收敛技术。利用独特的抛光垫修整技术,将抛光垫表面修整成特定形状,使工件与抛光垫的接触面产生不均匀的压力分布,并结合精确的抛光转速控制,以加快工件面形精度的收敛速度。实验结果表明,将抛光垫修整成微凸面形,可以有效避免抛光中元件过早塌边问题,能将大口径平面元件的初抛时间从数天缩短到6 h以内,元件面形精度提高到1个波长左右。 A technique based on contact pressure compensation is presented in order to quicken the convergence of surface of large-aperture optical components during the pre-polishing processes.The pad surface is conditioned to a specific shape using an innovative pad conditioning technique,and thus the non-uniform distribution of contact pressure will be engendered at the interface between workpiece and polishing pad.Combining with accurate polishing speed controlling,the uneven pressure distribution will make workpiece's surface converge to the desired shape more quickly,which was verified by our experiments.The experiments also indicate that conditioning pad surface to convex can avoid excessive removal of workpiece edge region during the early stages of polishing process.Compared to the traditional single spindle polishing,the aforementioned technique can shorten the entire polishing process from several days to within 6 hours and in the meantime improve the surface precision to about one wavelength.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第2期423-427,共5页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 光学元件 抛光 面形精度 压力分布 抛光垫 optical components polishing surface precision pressure distribution polishing pad
  • 相关文献

参考文献8

  • 1杨福兴.大口径平面光学元件超精密加工技术的研究[J].光学技术,2004,30(1):27-29. 被引量:9
  • 2王健,许乔,石琦凯.石英薄板的数控加工技术[J].光学技术,2001,27(6):560-561. 被引量:4
  • 3Cumbo M J. Chemo-mechanical interactions in optical polishing[D]. New York: University of Rochester, 1993.
  • 4Preston F W. The theory and design of plate glass polishing machines[J]. Journal of Society of Glass Technology, 1927, 11:214-256.
  • 5Luo Jianfeng, Dornfeld D A. Material removal mechanism in chemical mechanical polishing: theory and modeling[J]. IEEE Trans on Semicond Manuf, 2001, 14(2):112-123.
  • 6Zhao Yongwu, Chang L, Kim S H. A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species[J]. Wear, 2003, 254:332-339.
  • 7Su Yawterng. Investigation of removal rate properties of a floating polishing process[J]. J Electrochem Soc, 2000, 147:2290-2296.
  • 8Li Yaguo, Wang Jian, Xu Qiao, et al. Effects of velocity and pressure distributions on material removal rate in polishing process[C]//Proc of SHE. 2009:7282.

二级参考文献6

  • 1English R R Jr. Optical system design[A]. Inertial confinement fusion quarterly report [ R ]. UCRL-LR- 105821-97-3, 1997, 7 ( 3 ) : 112-114.
  • 2Atherton J. Producing NIF's optics[ A]. Inertial confinement fusion quarterly report [ R ]. UCRL-LR-105821-97-3, 1997, 7 ( 3 ) : 125-131.
  • 3Kauffman R. Inertial confinement fusion annual report[R]. 1998. UCRL-LR-105821-98,1998.61-71.
  • 4Zhang Xuejun,Opt Eng,1997年,36卷,3396页
  • 5Qiao Xu,SPIE 4231,156页
  • 6仇中军,张飞虎,谢大纲.应用ELID技术进行微晶玻璃超精密磨削[J].金刚石与磨料磨具工程,2002,22(1):37-39. 被引量:7

共引文献11

同被引文献19

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部