期刊文献+

利用分离性测度多类支持向量机进行高光谱遥感影像分类 被引量:7

Multi-Class Support Vector Machine Classifier Based on Separability Measure for Hyperspectral Remote Sensing Image Classification
原文传递
导出
摘要 从支持向量机的基本理论出发,结合高光谱数据的分离性测度,提出了一种基于分离性测度的二叉树多类支持向量机分类器,并用OMIS传感器获得的高光谱遥感数据和Hyperion高光谱遥感数据进行实验,分析比较了各种多类SVM的分类精度,并和传统的光谱角制图和最小距离分类算法进行了比较。结果表明,SVM进行高光谱分类时,基于分离性测度的二叉树多支持向量机的分类精度最高。 According to SVM theory and the separability measure of hyperspectral data,we put forward a novel binary tree multi-class SVM classifier based on separability between different classes,constructed different multi-class SVM classifiers and tested their accuracy by experimented the hyperspectral image with the 64 bands OMISII data and Hyperion hyperspectral data.The experimental results show that the novel binary tree classifier has the highest accuracy than the other multi-class SVM classifiers and some traditional classifiers(spectral angle mapping classification and minimum distance classification).Use of the novel binary tree multi-class SVM classifier based on separability measure is a novel approach which improves the accuracy of hyperspectral image classification and expands the possibilities for scientific interpretation and application.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2011年第2期171-175,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40401038) 国家863计划资助项目(2007AA12Z162) 高等学校博士学科点专项科研基金资助项目(20070290516) 江苏省普通高校研究生科研创新计划资助项目(CX08B_112Z)
关键词 高光谱遥感 分离性测度 多类支持向量机 分类 hyperspectral remote sensing separability measure multi-class support vector machine classification
  • 相关文献

参考文献11

  • 1沈照庆,舒宁,陶建斌.一种基于NPA的加权“1 V m”SVM高光谱影像分类算法[J].武汉大学学报(信息科学版),2009,34(12):1444-1447. 被引量:3
  • 2张睿,马建文.一种SVM-RFE高光谱数据特征选择算法[J].武汉大学学报(信息科学版),2009,34(7):834-837. 被引量:16
  • 3Hsu C, Lin C. A Comparison of Methods for Mul- ticlass Support Vector Machines[J]. IEEE Transac-tions on Neural Networks, 2002,13(2): 415-425.
  • 4刘志刚,李德仁,秦前清,史文中.支持向量机在多类分类问题中的推广[J].计算机工程与应用,2004,40(7):10-13. 被引量:150
  • 5Boardman J, Kruse F. Automated Spectral Analysis: A Geological Example Using AVIRIS Data [ C]. The 10th Thematic Conference on Geologic Remote Sens- ing, North Grapevine Mountains, Nevada, 1994.
  • 6Xu Bing, Gong Peng. Land-use/Land-cover Classi- fication with Multispectral and Hyperspectral EO-1 Data[J]. Photogrammetric Engineering and Remote Sensing, 2007,73(8): 955-965.
  • 7谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. 被引量:108
  • 8Chang C, Lin C. LIBSVM: A Library for Support Vector Machines [OL]. http://csie, ntu. edu. tw/cj- lin/libsvm, 2001.
  • 9Kressel U. Pairwise Classification and Support Vec- tor Machines [M]. Advances in Kernel Methods-- Support Vector Learning. Cambridge: MIT Press, 1999:255-268.
  • 10Platt J, Cristianini N, Shawe-Taylor J. Large Mar- gin DAGs for Multiclass Classification [ J]. Ad- vances in Neural Information Processing Systems, 2000,12(3) : 547-553.

二级参考文献24

  • 1黄发良,钟智.用于分类的支持向量机[J].广西师范学院学报(自然科学版),2004,21(3):75-78. 被引量:14
  • 2张钧萍,张晔.基于多特征多分辨率融合的高光谱图像分类[J].红外与毫米波学报,2004,23(5):345-348. 被引量:8
  • 3徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 4Du Qian, Chang C I. A linear Constrained Distance-Based Discriminate Analysis for Hyperspectral Image Classification[J]. Pattern Recognition, 2001, 34(2) :361-373.
  • 5Harsanyi J C, Chang C I. Hyperspectral Image Classification and Dimensionality Reduction: an Orthogonal Subspace Projection Approach[J]. IEEE Transactions on Geoscience and Remote Sensing,1994, 32(4):779-785.
  • 6Heesung K, Nasrabadi N M. Kernel Orthogonal Subspace Projection for Hyperspectral Signal Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12):2 952-2 962.
  • 7Du Hongtao, Qi Hairong, Wang Xiaoling, et al. Band Selection Using Independent Component Analysis for Hyperspectral Image Processing[C]. Applied Imagery Pattern Recognition Workshop, Washington D C, USA, 2003.
  • 8Kim D H, Finkel L H. Hyperspectral Image Processing Using Locally Linear Embedding[C]. The First International IEEE EMBS Conference on Neural Engineering, Capri, Italy, 2003.
  • 9Guyon I, Weston J, Barnhill S. Gene Selection for Cancer Classification Using Support Vector Machines[J]. Machine Learning, 2002, 46 (1) : 389- 422.
  • 10Bazi Y, Melgani F. Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3 374-3 385.

共引文献271

同被引文献100

引证文献7

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部