期刊文献+

一种基于运动想象的脑-机接口时空滤波器迭代算法 被引量:9

An Iterative Algorithm for Learning Spatio-Temporal Filters for Motor Imagery-Based Brain-Computer Interfaces
在线阅读 下载PDF
导出
摘要 基于运动想象的脑-机接口系统是脑-机接口中的一个主要研究方向,共空间模式(CSP)算法是一种流行的运动想象数据分析特征提取方法。共空间模式的性能依赖于恰当的带通滤波,通常高度依赖于神经生理先验知识。本研究提出一种称为共迭代时空模式(ICSTP)的运动想象时空特征提取方法,该算法用与空域滤波器设计相同的广义特征值问题优化时域滤波器,并给出了算法收敛性的证明。真实脑电数据实验结果表明算法的收敛只需数个循环,且平均正确率高于人工选择时域滤波器的标准CSP方法。 The motor imagery-based brain-computer interface(BCI) system is an important research theme in BCIs.A popular feature extraction method for motor imagery data analysis is the common spatial patterns(CSP) algorithm.The performance of the CSP feature extraction is contingent on appropriate band-pass filtering,which usually highly depends on the prior neurophysiologic knowledge.In this paper we present an algorithm termed iterative common spatial-temporal patterns(ICSTP) for learning spatio-temporal features from motor imagery EEG data.The algorithm optimizes temporal filters by solving a generalized eigenvalue problem in the same way as CSP does in learning spatial filters.A proof for the convergence of the algorithm is provided.Experimental results on real EEG data demonstrate that the algorithm can converge rapidly within a few iterations.The average accuracy is higher than that of standard CSP using manually chosen temporal filters.
作者 段放 高小榕
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第1期11-16,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金重点项目(90820304)
关键词 滤波器设计 运动想象 脑-机接口 共空间模式 迭代优化 filter design motor imagery brain-computer interface(BCI) common spatial patterns(CSP) iterative optimization
  • 相关文献

参考文献12

  • 1Wolpaw JR,Birbaumer N,McFarland DJ,et al.Braincomputer interfaces for communication and control[J].Clinical Neurophysiolagy,2002,113(6):767-791.
  • 2De Vries S,Mulder T.Motor imagery and stroke rehabilitation:a critical discussion[J].Journal of Rehabilitation Medicine,2007,39(1):5-13.
  • 3Blankertz B,Tomioka R,Lemm R,et al.Optimizing spatial filters for robust EEG single-trial analysis[J].IEEE Signal Proc Magzine,2008,25(1):41-56.
  • 4Lemm S,Blankertz B,Curio G,et al.Spatio-spectral filters for improved classification of single trial EEG[J].IEEE Trans Biomed Eng,2005,52(9):1541-1548.
  • 5Dornhege G,Blankertz B,Krauledat M,et al.Combined optimization of spatial and temporal filters for improving braincomputer interfacing[J].IEEE Trans Biomed Eng,2006,53(11):2274-2281.
  • 6Novi Q,Guan C,Dat TH,et al.Sub-band Common Spatial Pattern(SBCSP)for Brain-Computer Interface[C]//Proceedings of 3rd International IEEE/EMBS Conference on Neural Engineering.Hawaii:IEEE,2007:296-300.
  • 7Wu Wei,Gao Xiaorong,Hong Bo,et al.Classifying Single-Trial EEG During Motor Imagery by Iterative Spatio-Spectral Patterns Learning(ISSPL)[J].IEEE Trans Biomed Eng,2008,55(6):1733-1743.
  • 8Ang KK,Chin ZY,and Guan C.Filter Bank Common Spatial Pattern(FBCSP)in Brain-Computer Interface[C]//Proceedingsof IJCNN 2008[C].HongKong:IEEE,2008:2391-2398.
  • 9Fukunaga F and Koontz W.Applications of the Karhunen-Loève expansion to feature selection and ordering[J].IEEE Trans Computers,1970,19(5):311-318.
  • 10Dornhege G,Blankertz B,Curio G,et al.Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms[J].IEEE Trans Biomed Eng,2004,51(6):993-1002.

同被引文献59

  • 1万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 2刘志明,吴明芬,许勇.一种基于遗传算法的权重的确定方法[J].五邑大学学报(自然科学版),2006,20(3):45-48. 被引量:10
  • 3Wolpaw JR, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [ J ]. Clinical Neurophysiology, 2002, 113 (6) :767 - 791.
  • 4Pfurtscheller G, Allison BZ, Brunner C, et al. The hybrid BCI [J]. Frontiers in Neuroscience, 2010, 4(Article 42) :1 -11.
  • 5LI Yuanqing, WANG Chuanchu, ZHANG Haihong, et al. An EEG based BCI system for 2D cursor control [ C ] // International Joint Conference on Neural Networks 2008, Hong Kong : 2008:2214 - 2219.
  • 6Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clinical Neurophysiology, 1999, 110:1842 - 1857.
  • 7Guo Fei, Hong Bo, Gao Xiaorong, et al. A brain-computer interface using motion-onset visual evoked potential [ J]. Journal of Neural Engineering, 2008, 5 :477 - 485.
  • 8Hong Bo, Guo Fei, Liu Tao, et al. N200 - speller using motion- onset visual response [ J ]. Clinical Neurophysiology, 2009, 120:1658 - 1666.
  • 9Zhang Dan, Xu Honglai, Wu Wei, et al. Integrating the spatial profile of the N200 speller for asynchronous brain-computer interfaces [ C ]// Proceedings of 33 a Annual International Conference of the IEEE EMBS. Boston: IEEE, 2011:4564 - 4567.
  • 10CHIN Z Y,ANG K K,WANG C C,et al.Multi-class filter bank common spatial pattern for four-class motor imagery BCI[J].31st Annual International conference of the IEEE EMBS,2009:571-574.

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部