摘要
基于运动想象的脑-机接口系统是脑-机接口中的一个主要研究方向,共空间模式(CSP)算法是一种流行的运动想象数据分析特征提取方法。共空间模式的性能依赖于恰当的带通滤波,通常高度依赖于神经生理先验知识。本研究提出一种称为共迭代时空模式(ICSTP)的运动想象时空特征提取方法,该算法用与空域滤波器设计相同的广义特征值问题优化时域滤波器,并给出了算法收敛性的证明。真实脑电数据实验结果表明算法的收敛只需数个循环,且平均正确率高于人工选择时域滤波器的标准CSP方法。
The motor imagery-based brain-computer interface(BCI) system is an important research theme in BCIs.A popular feature extraction method for motor imagery data analysis is the common spatial patterns(CSP) algorithm.The performance of the CSP feature extraction is contingent on appropriate band-pass filtering,which usually highly depends on the prior neurophysiologic knowledge.In this paper we present an algorithm termed iterative common spatial-temporal patterns(ICSTP) for learning spatio-temporal features from motor imagery EEG data.The algorithm optimizes temporal filters by solving a generalized eigenvalue problem in the same way as CSP does in learning spatial filters.A proof for the convergence of the algorithm is provided.Experimental results on real EEG data demonstrate that the algorithm can converge rapidly within a few iterations.The average accuracy is higher than that of standard CSP using manually chosen temporal filters.
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2011年第1期11-16,共6页
Chinese Journal of Biomedical Engineering
基金
国家自然科学基金重点项目(90820304)
关键词
滤波器设计
运动想象
脑-机接口
共空间模式
迭代优化
filter design
motor imagery
brain-computer interface(BCI)
common spatial patterns(CSP)
iterative optimization