期刊文献+

反应条件对苛求芽孢杆菌胞内尿酸酶与嘌呤衍生物作用的影响 被引量:2

Effects of Reaction Conditions on Interactions of Some Purine Derivatives with the Intracellular Uricase from Bacillus fastidiosus
原文传递
导出
摘要 用底物尿酸的紫外吸收变化跟踪反应,用单或双底物米氏方程和初速度估算苛求芽孢杆菌胞内尿酸酶最大反应速度,按Arrenius经验公式得到该尿酸酶在pH 9.2和pH 7.4的活化能,但这些活化不能解释其在两个pH下的催化活性差异.该酶同常见嘌呤衍生物氧嗪酸、黄嘌呤和尿酸有亲和力,但对尿酸亲和力最低,且亲和力与嘌呤衍生物解离成阴离子的能力相关.在生理条件下,该酶对尿酸的亲和力相对于最适条件有显著下降.据此推测,优化静电相互作用选择性增强该酶对尿酸的亲和力是提高其成药性的可能措施之一. By monitoring the changes of UV absorbance of uric acid,the activation free energies of the intracellular uricase from Bacillus fastidiosus at pH 9.2 and pH 7.4 were estimated with Arrhenius equation,and the maximal reaction rates approximated from initial rates,but they can not account for the difference in the catalytic activity of this uricase under the two pH values.Among common purine derivatives,oxonate,xanthine and uric acid had affinities to this uricase,and uric acid had the lowest affinity.These affinities had some relationships to the dissociated constants of the tested compounds.Under physiological conditions,this uricase had a much weaker affinity for uric acid than that under the optimum conditions.It was proposed that the selective enhancement of the affinity of this uricase for uric acid over xanthine by engineering ionic interactions was possible to improve its pharmaceutical properties.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2011年第1期91-94,共4页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(Nos.30672009 81071427) 教育部新世纪优秀人才支持计划(No.NCET-09)~~
关键词 尿酸酶 嘌呤衍生物 尿酸 苛求芽孢杆菌 活化能 亲和力 uricase purine derivatives uric acid Bacillus fastidiosus activation free energy affinity
  • 相关文献

参考文献29

  • 1Davidson MB, Thakkar S, Hix JK, Bhandarkar ND, Wong A, Schreiber MJ. Pathophysiology, clinical consequences, and treatment of tumor lysis syndrome. Am J Med, 2004, 116: 546-554.
  • 2Kang DH, Nakagawa T. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol, 2005, 25: 43-49.
  • 3Ramazzina I, Folli C, Secchi A, Berni R, Percudani R. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol, 2006, 2: 144-148.
  • 4Mene P, Punzo G. Uric acid: Bystander or culprit in hypertension and progressive renal disease? J Hypertens, 2008, 26: 2085-2092.
  • 5Feig DI, Kang DH, Johnson RJ, Uric acid and cardiovascular risk. N Engl J Med, 2008, 359: 1811-1821.
  • 6Bomalaski JS, Clark MA, Serum uric acid-lowering therapies: Where are we heading in management of hyperuricemia and the potential role of uricase. Curr Rheumatol Rep, 2004, 6: 240-247.
  • 7Jeha S, Kantarjian H, Irwin D, Shen V, Shenoy S, Blaney S, Camitta B, Pui CH, Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial. Leukemia, 2005, 19: 34-38.
  • 8Sundy JS, Herbfield MS. Uricase and other novel agents for the management of patients with treatment-failure gout. Curr Rheumatol Rep, 2007, 9: 258-64.
  • 9Sherman MR, Saifer MGP, Perez-Ruiz F, PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv Drug Deliv Rev, 2008, 60: 59-68.
  • 10Chohan S, Becker MA, Update on emerging urate-lowering therapies. Curr Opin Rheumatol, 2009, 21: 143-149.

二级参考文献4

共引文献4

同被引文献34

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部