摘要
交叉验证容噪分类算法是处理含噪音数据集分类问题的重要手段之一.从样本复杂度理论出发,对其有效性进行了详细的理论证明,并给出适用条件.提出一种容噪数据流集合分类算法,理论分析和实验验证表明,该算法与传统交叉验证容噪算法相比,具有更高的分类准确率.
Cross validation noise-tolerance classification algorithm is an important method which deals with noisy data set classification problem.According to sample complexity theory,cross validation noise-tolerance classification algorithm validity was proved and applied conditions was given.And noise-tolerance data stream ensemble classifiers was proposed in this paper.Theory and experiment indicated,in contrast with tradition cross validation noise-tolerance classification algorithm,this method had more prediction accuracy.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2011年第2期378-382,共5页
Acta Electronica Sinica
基金
国家自然科学基金(No.60873037
No.61073041
No.61073043)
关键词
交叉验证
容噪
分类
集合分类器
cross validation
noise-tolerance
classification
ensemble classifiers