期刊文献+

基于拓扑优化的声学结构材料分布设计 被引量:16

DESIGN OF MATERIAL DISTRIBUTION OF ACOUSTIC STRUCTURE USING TOPOLOGY OPTIMIZATION
在线阅读 下载PDF
导出
摘要 针对结构的声学设计问题进行研究,通过优化两种不同的材料在结构设计域内的拓扑分布来最小化谐振结构所产生的声场中指定参考面/参考域内的声压.在研究中假定结构为线弹性小变形结构,材料阻尼为Rayleigh阻尼,声学介质为无黏、可压缩、小扰动流体.对结构响应采用有限元格式进行计算,对声场采用基于Helmholtz积分的边界元格式进行计算,由于声场在无穷远自由边界的无反射条件在边界积分中能自动得到满足,该格式特别适合于具有开放边界的声场计算.建立了结构有限元-声场边界元格式的耦合系统拓扑优化模型,导出了耦合系统敏感度分析的一般格式及伴随格式.数值算例验证了所提出的结构-声学耦合系统优化方法的有效性和可靠性,并揭示了基于声学准则的拓扑优化结果的有关特性. Analysis and design of the acoustic structure are studied in the present paper.The sound pressure on a prescribed reference plane/domain in the acoustic field that is generated by the vibrating structure is minimized by two-phase damping material distribution optimization over the structural domain.The Finite element method-Boundary element method(FEM-BEM) based structural-acoustic coupling topology optimization model is established.The sensitivities of the coupling variables with respect to the design variables are derived by using the direct differentiation method as well as the adjoint method.It is pointed out that the adjoint method provides the more efficient formulation for sensitivity analysis when the amount of the reference field points on the reference surface for sound pressure calculation is much less than the total amount of the design variables.The proposed methods are validated by numerical examples of the designs of the traveling wave tube and the motor cover.Some interesting features on optimum topologies obtained from the structural-acoustic coupling designs are revealed and discussed.
出处 《力学学报》 EI CSCD 北大核心 2011年第2期306-315,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10672087 90816025)~~
关键词 边界积分 结构声学耦合系统 拓扑优化 敏感度分析 伴随方法 boundary integral structural-acoustic coupling system topology optimization sensitivity analysis adjoint method
  • 相关文献

参考文献34

  • 1Cheng G, Olhoff N. An investigation concerning optimal design of solid elastic plates. Int J Solids Struct, 1981, 18(2): 153-169.
  • 2Cheng G, Olhoff N. Regularized formulation for optimal design of axisymmetric plates. Int J Solids S~ruct, 1982, 17:305-323.
  • 3Kohn RV, Strang G. Optimal design in elasticity and plas- ticity. Num Meths Eng, 1986, 22:183-188.
  • 4Allaire G Kohn RV. Optimal design for minimum weight and compliance in plane stress using extremal microstrcu- tures. Eur J Mech A/Solids, 1993, 12(6): 839-878.
  • 5Bends0e MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng, 1988, 71(2): 197-224.
  • 6Rozvany G, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Optirn, 1992, 4: 250-252.
  • 7Bendsoe MP, Sigmund O. Material interpolation schemes in topology optimization. Arch Appl Meeh, 1999, 69:635-654.
  • 8Sigmund O. On the design of compliant mechanisms us- ing topology optimization. J Mech Struct Maeh, 1997, 25: 493-524.
  • 9Eschenauer H, Olhoff N. Topology optimization of contin- uum structures: A review. Appl Mech Rev, 2001, 54(4): 331-389.
  • 10Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin Heidelberg, New York: Springer, 2003.

同被引文献179

引证文献16

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部