期刊文献+

一种改进的多通道盲信号解相关算法 被引量:2

An Improved Algorithm for Blind Multi-channel Signal Decorrelation
在线阅读 下载PDF
导出
摘要 针对多通道解相关算法在混合信号协方差矩阵的最大特征值较大或者最大与最小特征值的比值很大(大于106的病态混合)时收敛速度变慢且收敛误差增大的不足,本文引入归一化方法,即在迭代过程中对解混信号进行归一化,从而限制其协方差矩阵最大特征值的取值范围,且降低最大与最小特征值的比值.数值仿真表明,改进后的算法在降低迭代误差和加强稳定性方面有了明显的改善,收敛速度也得到了可观的提升,改进算法也具有更广的适应范围. As the maximal eigenvalue of the mixture's covariance matrix becomes very large or the ratio of the maximal eigenvalue to its minimal eigenvalue is very large(which is larger than 106 as ill-conditioned mixture),the current blind multi-channel signal decorrelation algorithms tend to be slow in convergence and large in decorrelation error.In this paper,we propose a new normalization algorithm which restricts the range of the covariance matrix's maximal eigenvalue and depresses the ratio of the maximal eigenvalue to its minimal eigenvalue.The new algorithm can greatly improve the convergence speed,decorrelation error,and computational stability of the blind multi-channel signal decorrelation.The simulations verify these advantages of the proposed algorithm.
出处 《工程数学学报》 CSCD 北大核心 2011年第1期15-20,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(40674064 40730424) 国家高技术研究发展计划(2006AA09A102-11) 国家科技重大专项(2008ZX05025-001-009 2008ZX05023-005-008)~~
关键词 解相关 特征值 病态混合 归一化 盲信号分离 独立成分分析 decorrelation eigenvalue ill-conditioned mixture normalization blind signal separation independent component analysis
  • 相关文献

参考文献9

  • 1乔永凤,马建芬.独立分量分析技术在语音信号处理中的应用[J].电脑开发与应用,2007,20(4):22-23. 被引量:2
  • 2Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4-5): 411-430.
  • 3Vigaxio R. Independent component analysis for identification of artifacts in magnetoencephalographic recordings[J]. Advances in Neural Information Processing Systems, 1998, 10:229-235.
  • 4Cichocki A, Amari S I. Adaptive Blind Signal and Image Processing[M]. LTD: John Wiley & Sons, 2002.
  • 5Silva F M, Almeida L B. A distributed solution for data orthonormalization[C]//International Conference of Artificial Neural Networks, Espoo, Finland, 1991, 1:943-948.
  • 6Silva F M, Almeida L B. A distributed decorrelation algorithm[J]. Neural Networks, 1991:145-163.
  • 7Cichocki A, Kasprzak W, Amari S I. Multi-layer neural networks with a local adaptive learning rule for blind separation of source signals[C]// International Symposium of Nonlinear Theory Application, Laa Vegas, NV, 1995:61-65.
  • 8Coraon P. Independent component analysis-a new concept?[J]. Signal Processing, 1994, 36:287-314.
  • 9Douglas S C, Cichocki A. Neural networks for blind decorrelation of signals[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2829-2842.

二级参考文献3

  • 1JUTTEN C, HERAULT J. Blind separation of source, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing. 1991,24(1):1-10.
  • 2P Comon, Independent component analysis, a new concept? [J]. Signal Processing, 1994,36 : 287-314.
  • 3Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Trans. Signal Processing, 1996, 44:3 017-3 029.

共引文献1

同被引文献27

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部