摘要
电磁场节点有限元法因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和三类变量的变分原理,由此提出了新的电磁共振腔节点有限元法,避免了伪解的出现.最后用子空间叠代法求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的.
The finite element method in electromagnetics has been puzzled by spurious solutions because electric field divergence is not imposed zero condition.In the paper Maxwell equations are given in frequency domain for the electromagnetic resonant cavity.By further introducing Lorentz condition,The 2 types variational principles with 2 kinds and 3 kinds of variables are conducted respectively.Based on that,a new method of node finite element for electromagnetic resonant cavity is proposed for avoiding spurious solutions,and the cavity eigenvalues are got with subspace iteration method.Numerical results illustrate the feasibility and effectiveness of this method in the paper.
出处
《动力学与控制学报》
2011年第1期1-6,共6页
Journal of Dynamics and Control
基金
国家自然科学基金重点项目(10632030)
973基础研究项目(2009CB918501)~~
关键词
电磁波
有限元
共振腔
本征值
子空间叠代法
electro-magnetic wave
finite element
resonant cavity
eigenvalue
subspace iteration method