期刊文献+

电磁共振腔的节点有限元法 被引量:2

NODE FINITE ELEMENT METHOD FOR ELECTRO-MAGNETIC RESONANT CAVITY
在线阅读 下载PDF
导出
摘要 电磁场节点有限元法因未强加电场散度为零的条件而一直受到伪解出现的困扰.本文针对电磁共振腔问题,给出在频域的Maxwell方程表达式.通过引入Lorentz条件,推导出电磁共振腔二类变量和三类变量的变分原理,由此提出了新的电磁共振腔节点有限元法,避免了伪解的出现.最后用子空间叠代法求解了共振腔的本征值问题.数值算例表明本文方法是有效可行的. The finite element method in electromagnetics has been puzzled by spurious solutions because electric field divergence is not imposed zero condition.In the paper Maxwell equations are given in frequency domain for the electromagnetic resonant cavity.By further introducing Lorentz condition,The 2 types variational principles with 2 kinds and 3 kinds of variables are conducted respectively.Based on that,a new method of node finite element for electromagnetic resonant cavity is proposed for avoiding spurious solutions,and the cavity eigenvalues are got with subspace iteration method.Numerical results illustrate the feasibility and effectiveness of this method in the paper.
作者 孙雁 钟万勰
出处 《动力学与控制学报》 2011年第1期1-6,共6页 Journal of Dynamics and Control
基金 国家自然科学基金重点项目(10632030) 973基础研究项目(2009CB918501)~~
关键词 电磁波 有限元 共振腔 本征值 子空间叠代法 electro-magnetic wave finite element resonant cavity eigenvalue subspace iteration method
  • 相关文献

参考文献7

二级参考文献15

  • 1[1]Ramo S, Whinnery JR, Van Duzer Th. Fields and Waves in Communication Electronics. 2nd ed. New York: J Wiley & Sons, 1984
  • 2[4]Yariv A. Quantum Electronics. 2nd ed. New York: J Wiley & Sons, 1975
  • 3[8]Zhong WX, Lin JH, Zhu JP. Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetric matrices. Computers & Structures, 1994, 52(5): 999~1009
  • 4[12]Leung AYT. Dynamic Stiffness & Sub-structures. London:Springer, 1993
  • 5[13]Zhong WX, Williams FW, Bennett PN. Extension of the Wittrick-Williams algorithm to mixed variable systems. J Vib & Acous Trans ASME, 1997, 119:334~340
  • 6[1]Goldstein H.Classical mechanics.2nd ed.London:AddisonWesley,1980
  • 7[4]Whittaker ET.A treatise on the analytical dynamics.4th ed.Cambridge:Cambridge Univ Press,1952
  • 8[1]Ramo S,Whinnery JR,Van Duzer Th.Fields and waves in communication electronics.2nd ed.NY:J Wiley &Sons,1984
  • 9[6]Green M,Limebeer D J N.Linear robust control.NJ:Prentice-Hall,1995
  • 10[7]Golub GH,Van Loan CF.Matrix computation.Baltimore:Johns Hopkins Univ Press,1983

共引文献52

同被引文献31

  • 1孙雁,谢军.基于Hamilton体系的辛半解析法在各向异性电磁波导中的应用[J].计算力学学报,2005,22(6):690-693. 被引量:4
  • 2陈杰夫,郑长良,钟万勰.电磁波导的辛分析与对偶棱边元[J].物理学报,2006,55(5):2340-2346. 被引量:7
  • 3孙雁,钟万勰.电磁波导的通过谱计算[J].计算力学学报,2006,23(6):663-667. 被引量:3
  • 4Ljjima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348) : 56-58.
  • 5Hanson G V. Fundamental transmitting properties of carbon nanotube antennas [ J ]. IEEETransactions on Antennas and Propagation, 2005,53( 11) : 3426-3435.
  • 6Fan S S,Chapline M G,Franklin N R, Tombler T W,Cassell A M,Dai H J. Self-oriented reg-ular arrays of carbon nanotubes and their field emission properties [ J ]. Science, 1999,283(5401) ; 512-514.
  • 7LJN Yue-he,LU Fang,TU Yi,REN Zhi-feng. Glucose biosensors based on carbon nanotubenanoelectrode ensembles[ J]. Nano Letters, 2004 , 4(2) : 191-195.
  • 8Fu K, Zannoni R, Chan C, Adams S H, Nicholson J, Polizzi E, Yngvesson K S. Terahertz de-tection in single wall carbon nanotubes[ J]. Applied Physical Letters, 2008,92(3) : 033105.
  • 9Wang Y, Kempa K,Kimball B, Carlson J B,Benham G, Li W Z, Kempa T, Rybczynski J,Herczynski A, Ren Z F. Receiving and transmitting light-like radio waves: antenna effect inarrays of aligned carbon nanotubes [J] . Applied Physical Letters, 2004, 85( 13) : 2607-2609.
  • 10Dresselhaus M S. Applied physics: nanotube antennas [ J ]. Nature, 2004, 432 (7020) : 959- 960.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部