期刊文献+

基于奇异值分解的雷达信号脉内调制类型自动识别 被引量:7

Automaic Recognition of Intra-Pulse Modulation Type of Radar Signal Based on SVD
在线阅读 下载PDF
导出
摘要 针对低信噪比下传统方法识别雷达信号脉内调制类型准确率低的问题,提出了一种有效的脉内调制类型自动识别方法。该方法首先计算雷达信号的模糊函数,然后利用图像处理算法提取其奇异值特征,将奇异值特征矢量作为神经网络的输入对脉内调制类型自动识别。仿真表明该方法在0dB信噪比下,对常见脉内调制信号识别率均大于84%。该方法需要的特征维数少、分类器结构简单、识别率高、抗噪能力强。 Aiming at the problem of low correct recognition rate to the modulation types of intra-pulse radar signal with common methods, an effective automatic recognition method of intra-pulse modulation types is put forward. Firstly, it calculates Ambiguity Function (AF) of radar signal, and then uses image processing algorithm to extract its singular value. The singular value vector is used as the in-put eigenvector of ANN to identify the intra-pulse modulation types automatically. The simulation re- suits show that the correct recognition rate is more than 84 % to common intra-pulse radar signal in the 0dB SNR. It is of fewer dimension of the character vectors, simple structure of classifiers, high correct recognition rate and isn't sensitive to noise.
出处 《电子信息对抗技术》 2011年第2期30-35,共6页 Electronic Information Warfare Technology
关键词 自动识别 脉内调制 模糊函数 奇异值分解 神经网络 automatic recognition intra-pulse modulation ambiguity function singular value distribution ANN
  • 相关文献

参考文献7

二级参考文献34

  • 1韩国成,吴顺君.雷达信号脉内调制特征的时频分析[J].航天电子对抗,2004,33(3):34-37. 被引量:20
  • 2ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 3曲长文,乔治国.雷达信号脉内特征的小波分析[J].上海航天,1996,13(5):15-19. 被引量:9
  • 4郑生华,徐大专,靳学明,章仁飞.基于时频分析的雷达侦察信号处理技术[J].重庆大学学报(自然科学版),2006,29(11):96-100. 被引量:10
  • 5S S Soliman, S Z Hsue. Signal classfication using statistical memonts [J]. IEEE Trans. Com., 1992, 40(5): 908-916.
  • 6E E Azzous, A K Nandi. Automatic identification of digital modulation type [J]. IEEE signal processing, 1995, 47(1): 55-69.
  • 7M L Wong, A K Nandi. Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons [A]. Six International symposiums on signal processing and its application [C]. 2001, 2(2): 390-393.
  • 8L Mingquan, X XianCi, L Lemin. Cyclic spectral features based modulation recognition [A]. Proceedings of International Conference on communications Technology [C]. 1996, 2(2): 792-795.
  • 9A K Nandi, E E Azzouz. Algorithms for automatic modulation recognition of communication signals [A]. IEEE Trans .on Comm. [C]. 1998, 46(4): 431-436.
  • 10M P Desimio, E P Glenn. Adaptive generation of decision functions for classification of digitally modulated signals [A]. National Aerospace Electronics Conference [C]. 1988. 1010-1014.

共引文献106

同被引文献66

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部