期刊文献+

移动核心网异常数据线性判别模型与应用 被引量:2

Linear discriminant model for abnormal data and applications in mobile core network
原文传递
导出
摘要 针对移动核心网数据突增现象下异常数据的特性,定义了数据突增事件、最大承载量临界值、风险警界线等,给出了TRAU数据两类模式("正常"、"异常")的划分方法.提出并建立了移动核心网数据突增现象下异常数据线性判别模型和判别准则,用来对某移动核心网BSC的TRAU数据进行判别分析.判别结果表明,本文所建立的异常数据线性判别模型对原数据样本的回判以及对新数据样本的识别准确率都达到100%. Based on the characteristics of data fault under data up burst phenomenon in mobile core network, this paper gives out the definition of data up burst event, the maximum bearing capacity critical value, risk alert line, etc. It gives a divided method of the two patterns ("normal", "abnormal") for TRAU data and proposes a linear discriminant model for abnormal data under data up burst phenomenon in mobile core network and a discriminant rule. The model and the rule are used to discriminate TRAU data of BSC of a mobile core network. The discriminant results indicate that the proposed model can all reach 100% classification accuracy within both the raw dataset and the new dataset.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第3期385-393,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871055) 教育部新世纪优秀人才支持计划项目(NCET-08-0615) 广东省科技计划项目(2010B010600028 2010A032000002) 东莞移动项目(CMGD-GD-200903268) 广东省第三期"211工程"重大项目基金 广东省高校重点人文社科研究基地重大项目(09JDXM63006)
关键词 移动核心网 数据突增事件 风险警界线 最大承载量临界值 线性判别模型 mobile core network data up burst event risk alert line the maximum bearing capacitycritical value linear discriminant model
  • 相关文献

参考文献22

  • 1赵宇.1987年我国首个TACS模拟蜂窝移动电话系统在广东建成并商用[EB/OL].通信世界网,http://www.cww.net.cn,2007-4-15.
  • 2路透社.全球移动运营商用户数排名:中国移动居首[EB/OL].http://wap.sohu.com/it/communication/?nid=382&rid=NL203663284.ND271126329&v=2.2010-3-26.
  • 3Denning C. An intrusion-detection model[C]//IEEE Computer Society Symposium on Research in Security and Privacy, 1986:118 -131.
  • 4Bauer D S, Koblentz M E. NIDX An expert system for real-time network intrusion detection[C]//Proceedings of the Computer Networking Symposium, 1988:98 -106.
  • 5Heady R, Luger G, Maccabe A, et al. The architecture of a network level intrusion detection system[R]. Technical Report, Dept of Computer Scienc, New Mexico Univ (United States), 1990, 8.
  • 6Samfat D, Molva R. IDAMN: An intrusion detection architecture for mobile networks[J]. IEEE Journal on Selected Areas in Communications, 1997, 15:1373 -1380.
  • 7Buschkes R, Kesdogan D, Reichl P. How to increase security in mobile networks by anomaly detection[C]//Proceedings of the Computer Security Applications Conference, 1998:3 -12.
  • 8Shyu M, Chen S, Sarinnapakorn K, et al. A novel anomaly detection scheme based on principal component classifier[C]//Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, 2003:172 -179.
  • 9Sun B, Yu F. Mobility-based anomaly detection in cellular mobile networks[C]//International Conference on WiSe 04, 2004:61 -69.
  • 10Leckie L C. Unsupervised anomaly detection in network intrusion detection using clusters[C]//Proceedings of tile 28th Australasian Computer Science Conference, 2005:333 -342.

二级参考文献27

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:505
  • 2刘赛,李涛.人工免疫中可变识别器反向选择算法研究[J].大众科技,2006,8(6):69-70. 被引量:1
  • 3Maxion R A,Feather F E.A case study of ethernet anomalies in a distributed computing environment[J].IEEE Transaction on Reliability, 1990,39(4) :433-443.
  • 4Ho L L,Cavuto D J,Papavassiliou S,et al.Adaptive and automated detection of service anomalies in transaction-oriented WAN'S:network analysis,algorithms,implementation,and deployment[J].IEEE Journal of Selected Areas in Communications,2000,18(5):744-757.
  • 5Thottan M,Ji C Y.Statistical detection of enterprise network problem[J].Journal of Network and Systems Man-Agement,1999,7(1): 27-45.
  • 6Li Y G,Chen K F,Liao X T,et al.A genetic clustering method for intrusion detection[J].Pattern Recognition, 2004,37(5 ) : 927-942.
  • 7MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proc 5th Berkeley Symp Mathematics Statist and Probability, 1967:281-297.
  • 8Sun J,Xu W B.A global search strategy of quantum behaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics an Intelligent Systems, 2004 : 111-116.
  • 9Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation, 2004: 325-331.
  • 10KDD99cupdataset [DB/OL]. (1999 -05 ).http://kdd.ics.uci.edu/databases/kddcup99/kdd-cup 1999.html.

共引文献15

同被引文献44

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部