期刊文献+

基于网页内容相似度和链接关系的社区发现及动态添加 被引量:2

An Algorithm for Community Identification and Dynamical Addition Based on Web Pages Contents Similarity and Link Relation
在线阅读 下载PDF
导出
摘要 给出了一种基于网页内容相似度和网页之间链接关系的社区发现方法.该方法不仅考虑了网页之间的超链接关系,而且着重考虑了网页在内容上的相似度并克服了传统社区发现算法忽略网页内容的局限性,使发现的社区在内容上更相关.在原始社区的基础上对其进行动态添加,将网络中新出现的与原始社区中的网页存在链接关系同时与主题相关的网页加入到原始社区.实验表明,此方法可以有效地应用于网络的社区发现,使发现的社区在内容上更相关. An algorithm for community identification based on the Web pages contents similarity and the link relation between the Web pages was proposed.The algorithm not only considered the hyperlinks between Web pages but focused on the content similarity of Web pages.This method overcame the limitations of ignoring the content of Web pages in traditional community discovery algorithms,so that the communities founded in the content were more relevant.In addition,the paper added the new members based on the original community dynamically,and added the new Web pages which linked to the Web pages of original community related to the theme into the original community.Experiments showed that the method was applied to community discovery in the network,and the community was more relevant in the content.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第1期75-79,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河北省教育厅科学研究重点项目 编号ZH200804
关键词 社区发现 相似度 链接关系 community identification similarity link relation
  • 相关文献

参考文献8

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Newman M E J,Grivan M. Finding and evaluating community structure in networks[J]. Physical Review, 2004 (E69) : 026113-1-026113-15.
  • 3Guimera R, Sales-Pardo M, Amaral L A N. Modularity from fluctuation in random graphs and complex networks[J]. Physical Review, 2004(E70) :025101-1-025101-4.
  • 4Berger-Wolf T Y, Saia J. A framework for analysis of dynamic social networks[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, 2006:523-528.
  • 5Tantipathananandh C,Berger-Wolf T Y. A framework for community identification in dynamic social networks[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, 2007: 717-726.
  • 6Lin Yuru, Chi Yun, Zhu Shenghuo, et al. Analyzing communities and their evolutions in dynamic social networks[C]// Proceedings of the Int Conference on Transaction on Knowledge Discovery from Data. New York, 2009: 8:1-31.
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual we search engine[C]//The 7th Int'l WWW Conference. Brishane, 1999 : 107-117.
  • 8李翠.基于链接分析的web社区发现研究与应用[D].西安:西安理工大学,2007.

二级参考文献27

  • 1M. Toyoda, Masaru Kitsuregawa. A Web community chart for navigating related communities. The 10th Int'l WWW Conf.,Hong Kong, 2001.
  • 2P. K. Reddy, Masaru Kitsuregawa. Inferring Web communities through relaxed-cocitation and power-law. Kitsuregawa Lab,Annual Report, 2001.
  • 3A. Z. Brodei', R. Kumar, F. Maghoul, et al. Graph structurein the web. Computer Networks, 2000, 33( 1-6): 309--320.
  • 4R. Albert, H. Jeong, A. -L. Barab6si. Diameter of the World-Wide Web. Nature, 1999, 401: 130--131.
  • 5D. M. Pennock, G. W. Flake, S. Lawrence. Winners don't take all: Characterizing the competition for links on the web.[EB/OL] . http://www.pnas.org/cgi/content/full/99/8/5207,2002-04-16.
  • 6M. R. Henzinger, R. Motwani, C. Silverstein. Challenges in web search engines. The 25th Int' 1SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.
  • 7S. Chakrabarti, B. E. Dom, D. Gibson, et al. Topic distillation and spectral filtering. Artificial Intelligence Review,1999, 13(5-6): 409--435.
  • 8D. Zhang, Y. Dong. An efficient algorithm to rank web resources. Computer Networks, 2000, 33(1-6): 449--455.
  • 9S. Chakrabarti, B. E. Dom, S. R. Kumar, et al. Mining the Web's link structure. IEEE Computer, 1999, 32(8): 60--67.
  • 10J. Dean, M. R. Henzinger. Finding related pages in the world wide web. The 8th Int'l WWW Conf., Toronto, Canada, 1999.389-- 401.

共引文献34

同被引文献73

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部