期刊文献+

一维变系数耗散系统Lagrange函数和Hamilton函数的新构造方法 被引量:10

A new approach to the construction of Lagrangians and Hamiltonians for one-dimensional dissipative systems with variable coefficients
原文传递
导出
摘要 提出构造二阶微分方程的Lagrange函数和Hamilton函数的新路径.将二阶方程写成一阶方程组并构造出对应的一阶Lagrange函数后,直接从一阶Lagrange函数导出二阶Lagrange函数和Hamilton函数.利用上述方法得到若干耗散和类耗散系统的一阶和二阶Lagrange函数以及Hamilton函数;讨论了这种方法的优点.举例说明所得结果的应用. A new approach to the construction of Lagrangian and Hamiltonian for a second-order differential equation is presented.By writing the second-order equation in the first-order form and constructing first-order Lagranian corresponding to the set of the first-order equations,the second-order Lagrangian and Hamiltionian are deduced from the first-order Lagrangian directly.By using the above method the first-order ane the second-order Lagrangians and the Hamiltonians for some of dissipative and dissipative-like systems are obtained.The advantage of the approach is discussed.Four examples are given to illustrate the applications of the results.
作者 丁光涛
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第4期327-331,共5页 Acta Physica Sinica
关键词 逆问题 耗散系统 LAGRANGE函数 HAMILTON函数 inverse problem dissipative system Lagrangian Hamiltonian
  • 相关文献

参考文献16

  • 1Santilli R M 1978 Foundations of Theoretical Mechanics I (New York : Springer-Verlag).
  • 2Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer-Verlag).
  • 3Mei F X 1988 Special Problems of Analytical Mechanics ( Beijing: Beijing Institute of Technology Press) ( in Chinese).
  • 4Currie D F, Saletan E J 1966 J. Math. Phys. 7 967.
  • 5Hojman S, Urrutia L F 1981 J. Math. Phys~ 22 1896.
  • 6Lopez G 1996 Ann. Ph~'s. 251 363.
  • 7Lopez G 1996 Ann. Phys. 251 372.
  • 8Ding G T 1996 J. Anhui Normal Univ. 19 382 ( in Chinese).
  • 9Pen H W 1980 Acta Phys. Sin. 29 1084 (in Chinese).
  • 10Lopez G, Lopez P 2006 Int. J. Theor. Phys. 45 734.

同被引文献61

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部