期刊文献+

有监督图优化保局投影 被引量:8

Supervised graph-optimized locality preserving projections
在线阅读 下载PDF
导出
摘要 研究了保局投影中近邻图的构造及更新问题,提出了一种有监督图优化保局投影(SGoLPP)特征提取方法,并应用于人脸识别。不同于传统的保局投影(LPP)算法预先设定权值矩阵并通过一次优化求解投影矩阵,SGoLPP将权值矩阵作为学习项引入到目标函数,通过交替迭代更新逐步获得最优权值矩阵和最优投影矩阵。同时,通过引入类别信息,始终对同类样本点对的权值进行更新,有效地抑制了异类样本的干扰。在UCI模拟数据集上,SGoLPP在较少的迭代次数下获得了更好的聚类和分类效果。在Yale,UMIST和CMU PIE人脸库上,SGoLPP的平均识别率比LPP、有监督保局投影(SLPP)和图优化保局投影(GoLPP)分别高出26.6%、4.8%和8.8%。实验显示本文提出的SGoLPP算法在样本可分性与鲁棒性方面具有优势,可有效地提取人脸特征。 This paper focuses on the construction and optimization of neighbour graph and proposes a Supervised Graph optimized Locality Preserving Projections (SGoLPP) method for facial feature extraction. Different from the Locality Preserving Projections(LPP) that it predefines the weight matrix and solves the projection matrix by one step optimization,the SGoLPP incorporates the weight matrix into the objective function as a learning term, and optimizes the weight matrix and projection matrix simultaneously. Meanwhile, the label information is utilized to update the weights corresponding to sample pairs in the same class and to avoid the interferences from samples not in the same class. Experiments on the Wine database of UCI show that the SGoLPP achieves better cluster performance with less iterations. For face recognition, the average recognition accuracies of SGoLPP on Yale, UMIST and CMU PIE face databases are 26.6%, 4.8% and 8.8% higher than those of LPP, Supervised Locality Preserving Projections (SLPP) and Graph-optimized Locality Preserving Projections (GoLPP), respectively, which verifies the effectiveness and superiority of the proposed method.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2011年第3期672-680,共9页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2007AA01Z423) 重庆市科技攻关重点项目(No.CSTC2009AB0175) 中央高校基本科研业务费资助项目(No.CDJZR10120010) 公安部应用创新基金资助项目(No.2010YYCXCQSJ074) 高等学校博士学科点专项科研基金资助项目(No.20100191120012)
关键词 图优化 有监督学习 保局投影 特征提取 人脸识别 graph optimization supervised learning locality preserving projections feature extraction face recognition
  • 相关文献

参考文献20

  • 1杨利平,龚卫国,辜小花,李伟红,杜兴.完备鉴别保局投影人脸识别算法[J].软件学报,2010,21(6):1277-1286. 被引量:34
  • 2杨利平,龚卫国,李伟红,辜小花.随机采样子空间保局投影人脸识别算法[J].光学精密工程,2008,16(8):1465-1470. 被引量:7
  • 3YANG I. P, GONG W G, GU X H, etal.. Bag- ging null space locality preserving discriminant clas- sifiers for face recognition[J]. Pattern Recognition, 2009, 42(9) : 1853-1858.
  • 4董超,赵慧洁,王维,李娜.采用局部正交子空间投影的高光谱图像异常检测[J].光学精密工程,2009,17(8):2004-2010. 被引量:11
  • 5杨晓敏,吴炜,何小海,陈默.应用SLLE实现手写体数字识别[J].光学精密工程,2009,17(3):641-647. 被引量:4
  • 6TURK M, PENTLAND A. Eigenfaces for recogni- tion[J]. Journal of Cognitive Neuroscience, 1991,3(1) :71-86.
  • 7BELHUMEUR P, HESPANFA J, KIREGEMAN D. Eigenfaces vs. fisher'faces: recognition usingclass specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine lntelligence, 1997,19(7):711 720.
  • 8TENENBAUM J B, SILVA V, LANGFORD J C A global geometric framework for nonlinear dimen sionality reduction E J3. Science, 2000, 290(5500) 2319-2323.
  • 9ROWEIS S T, SAUL L K. Nonlinear dimensionali- ty reduction by locally linear embedding [J]. Sci- ence, 2000,290(5500) :2323-2326.
  • 10BEI.KIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]. Advances in Neural Information Processing Systems 14, Cambridge: MIT Press, 2002: 585- 591.

二级参考文献46

共引文献50

同被引文献93

  • 1李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 2Zhao W, Chellappa R, Phillips P J, et al. Face Recognition: A Lit- erature Survey. ACM Computing Surveys, 2003, 35 (4): 399-458.
  • 3Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cogni- tive Neuroscience, 1991, 3 ( 1 ) : 71-86.
  • 4Belhumeur P, Hesoanfa J, Kiregeman D. Eigenfaces vs. Fisherfaces : Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 5Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extrac- tion and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (2) : 230-244.
  • 6Zhang Sheng, Sire T. Diseriminant Subspace Analysis: A Fukuna- ga-Koontz Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1732-1745.
  • 7Lu Juwei, Plataniotis K N, Ventsanopoulos A N. Regularization Studies of Linear Discrirninant Analysis in Small Sample Size Sce- narios with Application to Face Recognition. Pattern Recognition Letters, 2005, 26(2) : 181-191.
  • 8Jiang Xudong, Mandal B, Kot A. Eigenfeature Regularization and Extraction in Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(3): 383-394.
  • 9Kim S K, Toh K A, Lee S. Two-Fold Regularization for Kernel Fisher Discriminant Analysis in Face Recognition. IEICE Electron- ics Express, 2009, 6(9) : 540-545.
  • 10He Xiaofei, Niyogi P. Locality Preserving Projections // Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Process- ing Systems. Cambridge, USA: MJT Press, 2004, XVI: 153-160.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部