摘要
提出具有重域的非对称模糊集 S 理论,具有重域的非对称双枝模糊集简称重域非对称双枝模糊集.这些研究是[1] 的继续.给出下列结果:1提出一次生成重域非对称双枝模糊集 S的普通交分解定理: 1° S = ∩λ∈[ - 1 ,1]λ( S∧○ S∨)λ, 2° S= ∩λ∈[ - 1 ,1]λ( S∧○ S∨) λ· 3° S= ∩λ∈[ - 1 ,1]λ( H∧ ○ H∨) λ(0 .1)2提出n 次生成重域非对称双枝模糊集 S的普通交分解定理: 1° S = ∩λ∈[ - 1 ,1]λ( S∧○ S∨)λ 2° S = ∩λ∈[ - 1 ,1]λ( S∧○ S∨) λ· 3° S= ∩λ∈[ - 1 ,1]λ( H∧ ○ H∨) λ(0 .2)3提出 S的最大重域存在定理。
This paper proposes the theory of nonsymmetric both branch fuzzy set S* with the overlap universe. For simplicity, the nonsymmetric both branch fuzzy set with the double universe is said to be double universe nonsymmetric both branch fuzzy set. This paper gives the following results. 1. This paper proposes the fuzzy ordinary intersection resolution theorem of 1 generated double universe nonsymmetric both branch fuzzy set S*: 1° S*=∩λ∈[-1,1]λ(S∧○S∨) λ 2° S*=∩λ∈[-1,1]λ(S∧○S∨) λ· 3° S*=∩λ∈[-1,1]λ(H∧○H∨) λ (0.1) 2. This paper propose the fuzzy ordinary intersection resolution theorem of n generated double universe nonsymmetric both branch fuzzy set S*: 1° S*=∩λ∈[-1,1]λ(S∧○S∨) λ 2° S*=∩λ∈[-1,1]λ(S∧○S∨) λ· 3° S*=∩λ∈[-1,1]λ(H∧○H∨) λ (0.2) 3. This paper propose maximum double universe existing theorem, minimal double universe existing theorem.
基金
山东省自然科学基金
关键词
模糊集
双枝模糊集
重域
非对称
Fuzzy set/The Therorem of fuzzy ordinary intersection resolution theorem of 1 generated S *
The fuzzy ordinary intersetion resolution theorem of n generated S *