期刊文献+

Ni掺杂浓度对硅纳米线光电性质的影响 被引量:4

Effects of Ni-doped concentration on electronic and optical properties of silicon nanowires
在线阅读 下载PDF
导出
摘要 利用基于密度泛函理论的第一性原理,对不同直径和浓度Ni掺杂硅纳米线的形成能、能带结构、态密度和光学性质进行了计算,结果表明:杂质Ni的形成能随硅纳米线直径的减小和掺杂浓度的降低而下降,这说明直径越大的硅纳米线掺杂越困难,杂质浓度越高的硅纳米线越不稳定.Ni掺杂在费米能级附近及带隙中引入杂质能级,其主要来自Ni的3d轨道,杂质能级扩展成杂质带,改变Ni的掺杂浓度可改变硅纳米线的带隙,改善其导电性.另外,还发现掺杂浓度明显改变了硅纳米线的吸收强度和宽度. The formation energies, band structure, density of states and optical properties for Ni-doped silicon nanowires of different diameters and concentration are calculated by first-principles based on density functional theory. The results show that the formation energies of Ni impurity increase as both the diameters and impurity concentration of Ni-doped silicon nanowires increase. It indicates that doping in bigger diameter silicon nanowires is difficult and higher impurity concentrations in silicon nanowires are unstable. The doping of Ni in silicon nanowires introduces impurity level in near Fermi level and the gap. It is contributed mainly by Ni 3d level. At high impurity concentration,these impurity levels become impurity bands. The change of Ni-doped concentration can result in the change in the band gap of silicon nanowire and improvement of its conductivity. In addition, the strength and width of absorption are obviously changed.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2011年第2期372-378,共7页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(10774036) 河北省自然科学基金(E2008000631) 河北省教育厅资助项目的课题(2009308) 河北省光电材料重点实验室和河北大学自然科学基金
关键词 电子结构 光学性质 第一性原理 SI纳米线 掺杂浓度 electronic structure, optical properties, first-principles, silicon nanowires, doped -concentration
  • 相关文献

参考文献28

  • 1Cui Y, Wei Q, Park H, etal. Nanowire nanosensors for highly sensitive and selective detection of biologi- cal and chemical species [J]. Science, 2001, 293: 1289.
  • 2Duan X, Huang Y, Agarwal R, et al. Single- nanowire electrically driven lasers [J]. Nature, 2003, 421:241.
  • 3Cui Y, Zhong Z, Wang D,et al. High performance silicon nanowire field effect transistors [J]. Nano Lett. , 2003, 3:149.
  • 4裴立宅,唐元洪,陈扬文,张勇.掺杂硅纳米线的研究进展[J].功能材料与器件学报,2004,10(4):399-406. 被引量:8
  • 5Cui Y,Duan X F, Hu J T,et al. Doping and electrical transport in silicon nanowires[J]. J. Phys. Chem. B, 2000, 104(22) 5213.
  • 6Zhou G W,Li H,Sun H P,elal. Controlled Li doping of Si nanowires by electrochemical insertion method [J]. Appl. Phys. Lett., 1999,75 (16) : 2447.
  • 7Tang Y H, Sun X H, Au F C K, etal. Microstructure and field-emission characteristics of boron-doped Si nanpartiele chains[J]. Appl. Phys. Lett., 2001,79:1673.
  • 8Huang C T, Hsin C L, Huang K W, etal. Er-doped silicon nanowires with 1.54um light-emitting and en- hanced electrical and field emission properties[J]. Appl. Phys. Lett. , 2007, 91:093133.
  • 9Bustarret E, Marcenta C, Achatz P,et al. Supercon- ductivity in doped cubic silicon[J]. Nature, 2006, 444 : 465.
  • 10Xu F, Xiao Z S, Cheng G A, etal. High concentration erbium doping of silicon-rich SiOz thin films on silicon[J]. Thin Solid Films, 2002, 410:94.

二级参考文献86

  • 1裴立宅,唐元洪,陈扬文,张勇.掺杂硅纳米线的研究进展[J].功能材料与器件学报,2004,10(4):399-406. 被引量:8
  • 2王英龙,周阳,褚立志,傅广生,彭英才.Ar环境气压对脉冲激光烧蚀制备纳米Si晶粒平均尺寸的影响[J].物理学报,2005,54(4):1683-1686. 被引量:18
  • 3闫玉丽,杨致,赵文杰,葛桂贤,雷雪玲,王清林.第一原理计算稀磁半导体(In_(1-x)Mn_x)As的晶格常数,磁性和电子结构[J].原子与分子物理学报,2007,24(3):601-604. 被引量:9
  • 4Fiebig M. Revival of the magnetoelectric effect [J]. J. Phys. D, 2005, 38:R123
  • 5Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics [J]. Science, 2005, 309:391
  • 6Eerenstein W, Mathur N D, Scott J E. Multiferroic and magnetoelectrie materials [J]. Nature, 2006, 442:759
  • 7Fiebig M, Lottermoser Th, Frohlich D, Pisarev A V. Observation of coupled magnetic and electric domains [J]. Nature, 2002, 419:818
  • 8Lottermoser Th. Magnetic phase control by an electric field [J]. Nature, 2004, 430:541
  • 9Nan C W, Liu G, Liu Y, et al. Magnetic-field-induced electric polarization in multiferroic nanostructures [J]. Phys. Rev. Lett., 2005, 94 : 197203
  • 10Ascher E, Rieder H , Schmid H, et al. Some properties of ferromagnetoelectric nickeliodine boracite, Ni3BTO13I[J]. J. Appl. Phys., 1966, 37:1404

共引文献22

同被引文献54

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部