期刊文献+

贴梗海棠花青苷组成及其与花色的关系 被引量:41

Identification of Anthocyanins Involving in Petal Coloration in Chaenomeles speciosa Cultivars
原文传递
导出
摘要 以贴梗海棠[Chaenomeles speciosa(Sweet)Nakai]不同花色的24份种质为材料,调查了其花色在CIE L*a*b*表色系的分布状况,利用高效液相色谱-光电二极管阵列检测(HPLC-DAD)和高效液相色谱-电喷雾离子化-多级质谱联用技术(HPLC-ESI-MSn)定性定量分析其花青苷组分,运用多元线性回归方法分析了花色与花青苷组成之间的关系。结果表明,贴梗海棠花瓣中共含有6种花青苷,分别是矢车菊素-3-O-半乳糖苷(Cy3Ga)、矢车菊素-3-O-葡萄糖苷、天竺葵素-3-O-半乳糖苷、天竺葵素-3-O-(半乳糖葡萄糖苷)[Pg3(Ga-G)]、矢车菊素-3-O-(半乳糖葡萄糖苷)以及矢车菊素-3-O-琥珀酸-阿拉伯糖苷(Cy3SucAra)。Cy3SucAra为首次发现。其中,Cy3Ga、Pg3(Ga-G)和Cy3SucAra是决定贴梗海棠花色的主要色素,这3种色素含量的增加导致花色显著变红。基于花青苷的组成信息,探讨了贴梗海棠的花色改良和蓝色花创制的策略。 Coloration and anthocyanins of petals collected from Chaenomeles speciosa(Sweet)Nakai of 24 accessions were determined. Color was measured by CIE L*a*b* scale and anthocyanins composition of C. speciosa was determined using high-performance liquid chromatography coupled with photodiode array detection(HPLC–DAD)and HPLC electrospray ionization mass spectrometry(HPLC–ESI–MSn). Cyanidin-3-O-galactoside(Cy3Ga),cyanidin-3-O-glucoside,pelargonidin-3-O-galactoside,pelargonidin-3-O-(galactose-glucose)[Pg3(Ga-G)],cyanidin-3-O-(galactose-glucose)and cyanidin-3-O- succinylarabinoside(Cy3SucAra)were detected. Cy3SucAra was identified in C. speciosa for the first time. We explored the relationship between petal colors and anthocyanin contents by multiple linear regression analyses. The results indicated that Cy3Ga,Pg3(Ga-G)and Cy3SucAra were important pigments,high contents of which significantly enhanced the red color of petals. Based on anthocyanins constitutions,flower color modification and blue color breeding for C. speciosa were discussed.
出处 《园艺学报》 CAS CSCD 北大核心 2011年第3期527-534,共8页 Acta Horticulturae Sinica
关键词 贴梗海棠 花青苷 高效液相色谱 质谱 花色形成机制 Chaenomeles speciosa anthocyanin HPLC–DAD MS petal coloration
  • 相关文献

参考文献22

  • 1Bomser J, Madhavi D L, Singletary K. 1996. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Med, 62:212 - 216.
  • 2Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. NutrRev, 56: 317- 333.
  • 3Buchert J, Koponen J M, Suutarinen M, Mustranta A, Lille M, Torronen R, Poutanen K. 2005. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J Sci FoodAgric, 85:2548 - 2556.
  • 4Byamukama R, Jordheim M, Kiremire B. 2006. Anthocyanins from flowers ofHippeastrum cultivars. Sci Hort, 109: 262 - 266.
  • 5Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K. 2003. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3, 5'-hydroxylase gene. Phytoehemistry, 63:15 - 23.
  • 6Harbome J B. 1958. Spectral methods of characterizing anthocyanins. Biochem J, 70:22 - 28.
  • 7Hashimoto F, Tanaka M, Maeda H. 2000. Characterization of cyanic flower color of Delphinium cultivars. J Jpn Soc Hort Sci, 69:428 - 434.
  • 8Hayashi K. 1944. Studies about anthocyanins, XII. Study on an antohcyanin form the flowers ofChaenomeles lagenaria. Acta Phytochim, 14:47 - 53.
  • 9Holton T A, BrugUera F, Lester D R. 1993. Clonging and expression of cytochrome P450 genes controlling flower color. Nature, 366:276 - 279.
  • 10Hou D X, Kai K, Li J J. 2004. Anthocyanidins inhibit activator proteinl activity and cell transformation: Structure-activity relationship and molecular mechanisms. Carcinogenesis, 25:29 - 36.

共引文献2

同被引文献459

引证文献41

二级引证文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部