期刊文献+

运动想象脑电信号识别研究

Study on the Motor Imagery EEG Signal Identification
在线阅读 下载PDF
导出
摘要 通过对运动想象脑电信号的分类,对受试者进行身份识别。采用一种盲源分离算法——二阶盲辨识对运动想象脑电信号进行处理,提高运动想象脑电信号的信噪比,进而采用Fisher距离对处理后的信号进行特征提取,最后采用BP神经网络对特征集进行分类,从而实现对受试者的身份识别。对三位受试者的四类运动想象脑电信号分别进行了分类识别,结果显示,四类运动想象脑电信号的识别率均达到80%左右,其中最高的是想象舌动脑电信号,其识别率达到88.1%,这在类似研究中属于较高的水平。 Subject identification can be done by classifying motor imagery EEG signals.To achieve the identification over the subjects,firstly we adopt a blind source separation(BSS) method called second-order blind identification to process the motor imagery EEG signals and increase the signal-to-noise ratio of those signals.Subsequently,Fisher distance approach is used to extract features from the treated signals.Finally,classification of extracted features is performed by back-propagation neural networks.Classified identification results from the four types of motor imagery EEG of the three subjects show that the average classification accuracy reaches 80%,and the most accurate is tongue movement imagery EEG,which reaches 88.1%--a high level compared with that of similar studies.
作者 肖丹 何科荣
出处 《江西蓝天学院学报》 2010年第2期45-49,共5页 Journal of Jiangxi Blue Sky University
基金 江西省教育厅青年科学基金项目(编号:GJJ09622)
关键词 身份识别 二阶盲辨识 运动想象 脑电 identification second-order blind identification motor imagery EEG
  • 相关文献

参考文献13

  • 1尹晶海,蒋德荣,穆振东,胡剑锋.基于运动想象的脑机接口残疾人游戏辅助平台的设计与应用[J].中国组织工程研究与临床康复,2008,12(35):6839-6843. 被引量:8
  • 2胡剑锋,肖丹,穆振东.基于二阶盲辨识的运动想象脑电信号分类[J].中国组织工程研究与临床康复,2008,12(13):2481-2484. 被引量:8
  • 3Ramaswamy Palaniappan,Danilo P. Mandic.EEG Based Biometric Framework for Automatic Identity Verification[J].The Journal of VLSI Signal Processing Systems for Signal Image and Video Technology.2007(2)
  • 4Anil K Jain.Biometrics:A Tool for Information Security[].IEEE Transactions On Information Forensics And Security.2006
  • 5Paranjpe RB,Mahovsky J,Benedicenti L,et al.The electroencephalogram as a biometric[].Proceedings of Canadian Conference on Electrical and Computer Engineering.2001
  • 6Palaniappan R.Method of identifying individuals using VEP signals and neural network[].IEEE Proceedings Science Measurement and Technology Journal.2004
  • 7Townsend G,Graimann B,Pfurtscheller G.A Comparison of Common Spatial Patterns With Complex Band Power Features in a Four-Class BCI Experiment[].IEEE Transactions on Biomedical Engineering.2006
  • 8D.Ioannidis,D.Tzovaras,I.G.Damousis,et al.Gait Recognition Using Compact Feature Extraction Transforms and Depth Information[].IEEE Transactions on Information Forensics and Security.2007
  • 9Ruffini G.ENOBIO First Tests of a Dry Electrophysiology Electrode using Carbon Nanotubes[].IEEE EMBS‘th Annual International Conference proceedings.2006
  • 10Mohammadi G.Person identification by using AR model for EEG signals[].Procth Int Conf Bioeng Techn.2006

二级参考文献43

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部