摘要
分析了一种具有负载传感功能的压力补偿阀芯的受力情况.对腔内流体运用动量守恒定理建立数学模型,并利用泰勒级数展开式使其线性化.建立阀芯的运动微分方程,由Routh-Hur-witz稳定判据给出了稳定条件,并分析了特征参数对阀性能的影响.数值模拟阀腔内流体流动的结果表明:阀腔底部区域的压力可以看作是一个恒定值,而不是位移的函数.集成运用Visual Basic和Matlab分析了压力流量增益系数、动量变化等对稳定性的影响.仿真和实验结果表明,若使液压系统实现全功率平稳控制,则需要合理选用弹簧刚度和合理设计补偿阀口的开口幅度.
The forces acting on the load-sensing compensated valve were illustrated and analyzed, the mathematical model was generated using classical momentum principles, while the linear analysis of this was carried out using the Taylor expansions. The valve motion of the system was described by presenting the equation of motion, the stability condition was given by Routh-Hurwitz stability criterion and the dynamic properties of the compensator were studied. The CFD analysis of the compensator was described to study the effect of the force acting on the bottom of the compensator. The pressure along the bottom wall was noted and its variation was plotted against the geometrical position of the bottom wall that it acted on. Noted that this pressure remain constant along the wall. Then, some plots describe the flow induced forces and coefficients used to understand the stability of the compensator itself.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2011年第4期561-564,共4页
Journal of Shanghai Jiaotong University
关键词
负载传感
压力补偿阀
数学模型
稳定性
load-sensing
pressure compensator
mathematical model
stability