期刊文献+

基于Poisson-Nernst-Planck模型的微通道电渗流数值模拟 被引量:2

Poisson-Nernst-Planck model for numerical simulation of electroosmotic flow in microchannels
在线阅读 下载PDF
导出
摘要 采用由电解质溶液离子输运Nernst-Planck方程、流体运动Navier-Stokes方程和电场Possion方程建立的Possion-Nernst-Planck模型,应用有限元分析方法研究二维光滑微通道电渗流输运特性和离子分布。对比分别基于Possion-Nernst-Planck模型和Poisson-Boltzmann模型数值模拟结果,结果表明:Possion-Nernst-Planck模型能更准确地模拟计算微通道中的电渗流输运特性和离子分布。 Using the Poisson-Nernst-Planck model which is comprised of Nernst-Planck equation for ion transport of electrolyte solution,Navier-Stokes equation for liquid flows and Poisson equation for electric field and the finite element simulation to study the transport properties of electroosmotic flow and ion distributions in 2D smooth microchannel.Comparison of numerical simulation of the Nernst-Planck model and the Poisson-Boltzmann model,the results show that the transport properties of electroosmotic flow and ion distributions in microchannel are more accurate predicted by the Poisson-Nernst-Planck model.
出处 《传感器与微系统》 CSCD 北大核心 2011年第5期37-40,43,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(50730007) 江西省教育厅科学技术研究计划资助项目(GJJ10071)
关键词 电渗流 微通道 数值模拟 Possion-Nernst-Planck(PNP) 离子分布 electroosmotic flow(EOF) microchannel numerical simulation Possion-Nernst-Planck(PNP) ion distributions
  • 相关文献

参考文献2

二级参考文献28

  • 1Woias E Micropumps-past, progress and future prospects [J]. Sensors and Actuators B (S0925-4005), 2005, 105(1): 28-38.
  • 2Patankar N A, Hu H H. Numerical simulation of electroosmotic flow [J]. Analytical Chemistry (S0003-2700), 1998, 70(9): 1870-1881.
  • 3Arulanandam S, Li D. Liquid transport in rectangular microchanncls by clectroosmotic pumping [J]. Colloids and Surfaces A (S0927- 7757), 2000, 161(1): 89-102.
  • 4Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic transport in microfabricated channel structure [J]. Analytical Chemistry (S0003-2700), 1998, 70(21): 4494-4505.
  • 5Erickson D, Li D. Influence of surface heterogeneity on electrokineticaUy driven microfluidic mixing [J]. Langmuir (S0743-7463), 2002, 18(5): 1883-1892.
  • 6Sinton D, Li D. Electroosmotic velocity profiles in microchannels [J]. Colloids and Surfaces A (S0927-7757), 2003, 222(1-3): 273-283.
  • 7Tian F, Li B, Kwok D Y. Simulation of eleclroosmotic flows in micro- and ranocharmels using a lattice Boltzmann model [J]. Journal of Computational and Theoretical Nanoscience (S 1546-1955), 2004, 1(4): 417-423.
  • 8Glatzel T, Litterst C, Cupelli C, et al. Computational fluid dynamics (CFD) software tools for micro fluidic applications-a case study [J]. Computers & Fluids (S0045-7930), 2008, 37(3): 218-235.
  • 9Jackson J D.经典电动力学[M].第3版(英文影印版).北京:高等教育出版社,2005.
  • 10Mohamed Gad-el-Hak. MEMS: Introduction and fundamentals [M]. Second Edition, London, UK: Taylor & Francis Group, LLC, 2006.

共引文献9

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部