期刊文献+

人脂肪间充质干细胞在聚ε-己内酯材料上转分化为内皮细胞

Human adipose-derived mesenchymal stem cells differentiate into endothelial cells on poly-ε-caprolactone
在线阅读 下载PDF
导出
摘要 目的研究人脂肪来源的间充质干细胞(hADSCs)在聚ε-己内酯共聚物上的附着和增殖能力及分化为内皮细胞的能力。方法选择材料孔径为60-80μm(小孔径)和180-200μm(大孔径),并计算在14 d内的吸水率和降解率。将hADSCs种植在不同孔径的材料上,计算接种率。利用DAPI免疫荧光标记及扫描电镜观察hADSCs的生长及分布情况,用CCK-8法绘制hADSCs增殖曲线。在材料上含有40 ng/mL VEGF和10 ng/mL bFGF的培养基上培养30 d后,用流式细胞术检测vWF和VE-cadherin,免疫荧光检测Flk-1。结果在小及大孔径材料上14 d的吸水率分别为200%和216.7%,降解率为13.3%和21.7%。hADSCs呈长梭形依附于多孔材料表面。小孔径的细胞接种率为98.3%±0.3%,明显大于大孔径的90.3%±1.5%(P〈0.05);增殖曲线亦是如此。在小孔径上分化50 d后,vWF和VE-cadherin的阳性率分别为80.9%±0.9%和84.3%±1.1%,大多数细胞表面均表达Flk-1。结论 hADSCs较适合在孔径为60~80μm聚ε-己内酯共聚物材料上生长和增殖,并可在材料上有效分化为内皮细胞。 Objective To study on adhesion ability,growth ability and differentiation into endothelial cells of human adipose-derived mesenchymal stem cells(hADSCs) planted on poly-ε-caprolactone material.Methods We chose the poly-ε-caprolactone with pore diameters of 60~80 μm and 180~200 μm.Absorption and degradated rate were calculated at 14th day.After hADSCs implantated in the materials with different diameters,comparison of seeding rate and growth were carried out by immunofluorescence with DAPI and scanning electron microscope(SEM).CCK-8 method was used to draw the growth curve.Endothelial differentiation with 40 ng/mL VEGF and 10 ng/mL bFGF after 50 days,vWF and VE-cadherin were detected by flow cytometers and Flk-1 was observed by immunofluorescence way.Results Absorption rates of small and large pore-size material at 14th day were respectively calculated as 200% and 216.7%,while degradation rates were 13.3% and 21.7%.After implantation of hADSCs,cells looked long fusiform attaching on the material by SEM.Seeding rate of small pore-size material was 98.3%±0.3%,which was comparatively more than seeding rate as 90.3%±1.5% of large pore-size material,and growth curve showed the same profile.Hence,endothelial differentiation was carried out with small pore-size material.Differentiating after 50 days,positive ration of vWF was 80.9%±0.9% and VE-cadherin was 84.3%±1.1%.Flk-1 expression was shown in most of cells as immuofluorescence.Conclusion Poly-ε-caprolactone material with pore diameter of 60~80 μm is suitable for the growth of hADSCs which successfully differentiated into endothelial cells.
出处 《基础医学与临床》 CSCD 北大核心 2011年第5期490-495,共6页 Basic and Clinical Medicine
基金 科技部社会公益专项(2005DIB1J086)
关键词 人脂肪间充质干细胞 聚Ε-己内酯 内皮细胞 hADSCs poly-ε-caprolactone endothelial cells
  • 相关文献

参考文献11

  • 1侯庆普,周春阳.生物降解高分子材料的研究新进展[J].现代化工,2000,20(12):20-22. 被引量:10
  • 2Wei YY, Hu HY, Wang HQ, et al. Cartilage regeneration of adipose-derived stem ceils in a hybrid scaffold from fi- brin-modified PLGA [ J]. Cell Transplantation, 2009, 18 : 159 - 170.
  • 3Wu YC, Shaw SY, Lin HR, et al. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds [ J]. Biomaterials, 2007, 27 :S96 -904.
  • 4Zuk PA, Zhu M, Mizuno H, et al. Multilineage ceils from human adipose tissue: Implications for cell-based therapies [J]. Tissue Eng, 2001,7:221 -228.
  • 5Gerardo M, Francesco R, Gennaro C, et al. β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentia- tion of human adipose stem ceils : in vitro study [ J ]. J Ma- ter Sci: Mater Med, 2010,21:353 -363.
  • 6Li Y, Yin W, Zhu W, et al. Cholera toxin induces malig-nant glioma cell differentiation via the PKA/CREB pathway [J]. Proc Natl Acad Sci USA, 2007,104:13438 -13443.
  • 7岳慧敏,张磊,王韫芳,梁峰,管利东,李绍青,闫舫,南雪,白慈贤,林峰,颜永年,裴雪涛.人骨髓来源的间充质干细胞在聚乳酸羟基乙酸材料上增殖及向内皮细胞分化的研究[J].科学通报,2006,51(10):1163-1168. 被引量:5
  • 8焦鹏,周娟,刘元波,甄文俊,欧阳小康,罗文琦.组织工程化血管与种子细胞[J].中国组织工程研究与临床康复,2009,13(11):2127-2130. 被引量:3
  • 9Kim IY, Seo SJ, Moon HS, et al. Chitosan and its deriva- tives for tissue engineering applications [ J ]. Biotechnol Adv, 2008,26 : 1 - 21.
  • 10Oh SH, Park IK, Kim JM, et al. In vitro and in vivo char- acteristics of PCL scaffolds with pore size gradient fabrica- ted by a centrifugation method [ J ]. Biomaterials, 2007, 28:1664 - 1671.

二级参考文献19

  • 11,Shankar W R,Thachil E T.Polym Recycl,1999,4(2):101~115
  • 22,Darwin K,Sebastian M.Polym Int,1999,48(5):346~352
  • 33,Scott G.Polym Degrad Stab,2000,68(1):1~7
  • 44,Kada E.J Photopolym Sci Technol,1999,12(2):251~256
  • 55,Huang S J,Ho L H,Huang M T,et al.Similarities and Differences between Biodegradation and Nonenzymatic Degradation.In:Doi Y,Fududa K.Biodegradable Plastics and Polymers.Amsterdam:Elsevier Science,1994.3~10
  • 66,Hooper K A,Cox J D,Kohn J.J Appl Polym Sci,1997,63(11):1499~1510
  • 77,Chu C C.Polym,1985,26(4):591~594
  • 88,Gan Z H,Liang Q,Zhang J,et al.Polym Degrad Stab,1997,56(2):209~213
  • 910,Lang M,Bei J,Wang S.J Biomat Sci:Polym Ed,1999,10(4):501~512
  • 1011,Thomson R C,Wake M C,Yaszemski M J,et al.Biodegradable Polymer Scaffolds to Regenerate Irgans.In:Peppas N A,Langer R S.Advances in Polymer Science.vol 122.New York:Springer,1995.245~274

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部