摘要
研究一类多滞量的非线性中立双曲型偏泛函微分方程的振动性,借助广义Riccati变换和微分不等式技巧,获得这类方程分别在Robin、Dirichlet边值条件下所有解振动的若干新的充分性条件,表明其振动是由时滞量引起的,所得结果推广了最近文献的相关结果.
In this article,the oscillation of a class of nonlinear neutral hyperbolic partial differential equations with deviating arguments is studied.By employing the generalized Riccati tansformation and the technique of differential inequalities,some new suffcient conditions for oscillaton of all solutions of such equations are obtained under Robin and Dirichlet boundary value conditions.The results fully indicate that the oscillation is caused by delay.The results generlize some of the lastest results.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2011年第3期9-13,共5页
Journal of Anhui University(Natural Science Edition)
基金
广东省自然科学基金资助项目(8151009001000044)
关键词
双曲型
偏泛函微分方程
振动性
偏差变元
Hyperbolic
partial functional differential equation
oscillation
deviating arguments