期刊文献+

随机需求下公交时刻表设计的鲁棒性优化 被引量:8

Robust optimization for transit timetable design under stochastic demands
原文传递
导出
摘要 考虑在实际运营中乘客需求具有随机性,固定需求下优化的公交时刻表不适应运营的要求.随机需求下的期望值模型忽略了不利可能事件对运营的负面影响,针对此情况研究随机需求下公交时刻表设计的鲁棒性优化.模型综合考虑乘客成本与运营成本,采用鲁棒性优化权衡目标期望值与偏差期望值.结合随机模拟技术,选用遗传算法求解模型.给出了算例,验证了模型和算法的有效性.通过比较固定需求模型、随机需求期望值模型、随机需求鲁棒性模型,说明在鲁棒性优化下需要提供更多的交通供给以降低偏差期望值.最后,对鲁棒性模型中的偏差权重系数进行了灵敏度分析. Considering stochastic passenger demands in actual operation, transit timetable optimized un- der deterministic demands did not meet operation's requirements. Expected value model under stochastic demands ignored negative impact, which made adverse possible events on operation. Aiming at this problem, robust optimization for transit timetable design under stochastic demands was studied. The model considered user cost and operation cost, and robust optimization was used to make a trade-off between expected value of objective and expected value of variation. With stochastic simulation techniques, genetic algorithm was provided to solve the model. A numerical example was given, which demonstrated the validity of the model and algorithm. By contrasting deterministic demands model, stochastic demands expected value model, stochastic demands robust model, the results show that under robust optimization more transit supply needs to be applied in order to reduce expected value of variation. At last, sensitivity analysis on variation weight coefficient in robust model is given.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第5期986-992,共7页 Systems Engineering-Theory & Practice
基金 国家高技术研究发展计划(863计划)(2006AA11Z203) 霍英东教育基金(104007) 北京交通大学重点基金资助项目(2006XZ004)
关键词 公交时刻表 随机乘客需求 鲁棒性优化 随机模拟 遗传算法 transit timetable stochastic passenger demands robust optimization stochastic simulation genetic algorithm
  • 相关文献

参考文献2

二级参考文献9

  • 1王丰元,潘福全,张丽霞,邹旭东.基于交通限制的路网最优路径算法[J].交通运输工程学报,2005,5(1):92-95. 被引量:39
  • 2宋瑞.ITS运输管理模式与决策优化的研究[D].北京:北方交通大学,1999.
  • 3HICKMAN M D,BERNSTEIN D H.Transit Service and Path Choice Models in Stochastic and Time-Dependent Networks[J].Transportation Science,1997,31(2):129-146.
  • 4NGUYEN S,PALLOTTINO S,MALUCELLI F.A Modeling Framework for Passenger Assignment on a Transport Network with Time Tables[J].Transportation Science,2001,35(3):238-249.
  • 5TONG C O,WONG S C.A Stochastic Transit Assignment Model Using a Dynamic Schedule-Based Network[J].Transportation Research,1999,33 (2):107-121.
  • 6BARNHART C,JOHNSON E L,NEMHAUSER G L,et al.Branch-Price:Column Generation for Solving Huge Integer Programs[J].Operations Research,1998,46(3):316-329.
  • 7VANDERBECK F.On Dantzig-Wolfe Decomposition in Integer Programming and Ways to Perform Branching in a Branch-and-Price Algorithm[J].Operations Research,2000,48 (1):111-128.
  • 8AHUJA R K,MAGNANTI T L,ORLIN J B.Network Flows,Theory,Algorithms and Applications[M].New Jersey:Prentice Hall,1993.
  • 9张飞舟,晏磊,范跃祖,孙先仿.智能交通系统中的公交车辆调度方法研究[J].中国公路学报,2003,16(2):82-85. 被引量:35

共引文献29

同被引文献60

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部