期刊文献+

基于有限元分析的电子部件热应力仿真方法 被引量:4

Thermal Stress Simulation of Fuze Electronic Components Based on Finite Element Analysis
在线阅读 下载PDF
导出
摘要 针对实际的快速温变试验中不能直观迅速地了解引信电子部件失效的原因及其失效过程的不足,提出基于COSMOSWORKS有限元分析软件的引信电子部件热应力仿真方法。该方法是热结构的耦合运算,包括热分析和热应力分析。首先根据温度循环试验剖面图定义参数,包括分析类型和选项、材料属性、施加载荷和约束,划分网格,然后应用软件的热分析功能求解在一定边界条件下的温度场,将温度场的计算结果作为热载荷再进行热应力仿真,求解热应力应变分布。快速温变循环强化试验表明:仿真结果符合实际,通过热应力仿真能够直观快速地发现引信电子部件的失效原因,了解失效过程,解决引信可靠性承受快速温变能力差的问题,为分析引信电子部件的热失效机制、优化其结构、提高引信可靠性提供了理论依据。 Being faced with the question that we can't realize the reason of fuze electronic components failure and the failure process clearly when temperature changes rapidly in practicality, using the finite element analysis software COSMOSWORKS to do thermal stress simulation on electronic components. This method is of heat structural coupling operations including thermal analysis and thermal stress analysis. At first, it was to define parameters according the temperature cycling test section including analysising type and option, material properties, exerting load and constraint, dividing the grid. Then, applied the thermal analysis function to solve temperature field in certain boundary conditions and carried out the thermal stress simulation to solve thermal stress and strain distribution using the temperature field calculation results as thermal loading. Rapid temperature change cycle intensifying test showed that the simulation results accorded with the situation of reality. Through the thermal stress simulation, we could find the failure cause and process quickly, and then to solve the poor reliability of fuze under rapid temperature change. The simulation provided theory basis for analysing the failure mechanism of the fuze electronic components, optimizing its structure and improving fuze reliability.
出处 《探测与控制学报》 CSCD 北大核心 2011年第2期45-50,共6页 Journal of Detection & Control
基金 国家教育部基金项目资助(2008024) 国防重点基金项目资助
关键词 引信 电子部件 热应力仿真 可靠性 fuze electronic components thermal stress simulation reliability
  • 相关文献

参考文献4

二级参考文献12

  • 1Chery1 Ascarrunz.高加速寿命试验(HALT):架起理论与实践的桥梁[R].Tandem计算机公司,..
  • 2MikeSilverman.高加速可靠性试验HALT/HASS综述[R].QualMark公司加速可靠性试验中心,..
  • 3Ramachandra Muniloti Pulak Dhar.多层陶瓷电容质量检定中的高加速寿命试验[J].IEEE Trans.On Comp.Hybrid.And Manu.Tech,1988,11(4).
  • 4A. W. Lessia. Recent Studies in Plate Vibrations: 1981-85, Part Ⅱ Complicating effects[J]. Shock Vib. Dig., 1987, 119[3]: 10-24
  • 5K. Preis, O. Biro, K. R. Richter. Application of FEM to Coupled Electric, Thermal and Mechanical Problems[J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316-3319
  • 6S. Boggs, J. Kuang, H. Andoh. Electro-Thermal-Mechanical Computations in ZnO Arrester Elements[J]. IEEE Transactions on Power Delivery, 2000, 15(1):128 -134
  • 7P. Sharifi, D. N. Yates. Nonlinear Thermo-Elastic- Plastic and Creep Analysis by the Finite-Element Method[J]. AIAA JOURNAL, 1974, 12[9]: 1210-1215
  • 8H. Jensen, A. Cifuentes. Improved approximations for structural reliability in thermal analysis[A]. In: T. J. Watson, IBM- Engineering Technology Report[C]. New York, IEEE, 1995: 1-20
  • 9I. Harari, S. Frey, L. P. Franca. A note on a recent study of stabilized finite element computation for heat conduction[J]. Computational Mechanics, 2002, 28(1): 63-65
  • 10陈奇妙.美国可靠性强化试验技术发展点评[J].质量与可靠性,1998(4):44-47. 被引量:25

共引文献51

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部