期刊文献+

基于遗传神经网络的误分类代价敏感网络入侵检测 被引量:2

Network Intrusion Detection Based on Genetic Neural Network Misclassification Cost Sensitive
在线阅读 下载PDF
导出
摘要 针对传统的基于遗传神经网络的入侵检测模型未考虑误分类代价的不足,将误分类代价敏感的特征集成到基于遗传神经网络的网络入侵检测模型中,从而克服了传统模型中错误分类时可能导致代价过大的缺点。通过实验结果表明,增加了误分类代价敏感特征后的遗传神经网络能较好地控制网络入侵检测系统误报、漏报攻击时所产生的代价。 The paper aims at the insufficient of traditional intrusion detection based on genetic neural network not consider the misclassification cost, integrate the misclassification cost-sensitive features into the network intrusion detection model which based on genetic neural network, to overcome the defect of the traditional model's error classifying result in excessive costs. The experiment results show that after the genetic neural network increased the misclassification cost-sensitive features, it can control the cost caused by the network intrusion detection's false report, omit report attacks preferably.
出处 《计算机系统应用》 2011年第6期49-51,48,共4页 Computer Systems & Applications
关键词 入侵检测 遗传算法 神经网络 误分类代价 intrusion detection genetic algorithm neural network misclassification cost
  • 相关文献

参考文献7

  • 1Sherif JS. Intrusion Detection System and Models Computer Society. Proc. of the Eleventh IEEE International Workshops on Enabling Technologies Infrastructure for Collaborative Enterprises (WETICE' 02). 2002.
  • 2李昆仑,黄厚宽,田盛丰,赵俊忠.入侵检测的1类支持向量机模型[J].中国安全科学学报,2003,13(6):72-75. 被引量:5
  • 3Goldbergde. Genetic Algorithms in Search, Optimization and Machine Learning. New York: Addison-Wesley, 1989.
  • 4Hart J, Kamber M. Data Minig: Concepts and Techniques. San Francisco CA: Morgan Kaufmann, 2001.
  • 5闻新 周露 等.神经网络应用设计[M].北京:科学出版社,2001..
  • 6杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 7Dudaro, Hart PE, Storkdg. Pattern Classification. 2nd Ed. New York:Wiley, 2001.311.

二级参考文献7

  • 1张小华,江国和,沈荣瀛.一种自适应伪并行改进遗传算法[J].华东船舶工业学院学报,2005,19(3):65-69. 被引量:6
  • 2..http://www. 11. mit. edu/IST/ideval/data/1999/.,.
  • 3Wenke Lee, Salvatore J. Stolfo & Kui W Moka. Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review 14.Issues on the Application of Data Mining. Kluwer Academic Publishers. Printed in the Netherlands,2000 : 533 - 567.
  • 4Bernhard Schoelkopf et al. Estimating the Support of a High-Dimensional Distribution. Technical Report, Department of Computer Science, University of Haifa, Haifa, 2001.
  • 5V N Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 6Yunqiang Chen, Xiang Zhou, and Thomas S, Huang, One-Class SVM for Learning in Image Retrieval, Proceeding IEEE Int'1 conference on Image processing, 2001.
  • 7郑伟华,郑金华.狭义遗传算法的遗传机理分析[J].湘潭大学自然科学学报,2003,25(1):21-23. 被引量:6

共引文献53

同被引文献36

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部