期刊文献+

基于T统计量的一种改进关联规则挖掘方法 被引量:6

Improved association rule mining method based on T statistical
在线阅读 下载PDF
导出
摘要 数据挖掘的一个重要任务便是从数据库中挖掘出有趣的关联规则。传统的关联规则挖掘方法一般基于支持度—置信度体系,时常会挖掘出虚假规则或忽略掉有用的规则。针对这一问题,借鉴对照实验的思想,提出基于T统计量的关联规则挖掘方法,用显著度代替置信度,使挖掘出的规则更具有统计显著性。算例分析和数据实验表明,这种方法可以解决传统关联规则方法存在的上述问题,提高关联规则的有效性。 One major purpose of data mining is to discover interesting association rules.And traditional data mining methods are generally based on support-confidence system,which might frequently dig out false rules or neglect useful ones.At terms of this problem,referring to the mind of control experiment,this paper developed T statistical-based association rule mining methodology,in which used significance to replace confidence in order to obtain results with more statistical significance.Accounting case analysis and data mining results show that this new method can efficiently solve problems underlying in traditional association rules methods,and thus improve the validity of the rules.
出处 《计算机应用研究》 CSCD 北大核心 2011年第6期2073-2077,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(70890080 70971033) 教育部新世纪优秀人才支持计划资助项目(NCET-08-0172)
关键词 数据挖掘 关联规则 T统计量 显著性 data mining association rule T statistical significant
  • 相关文献

参考文献20

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Database mining: a per- formance perspective [ J]. IEEE Trans on Knowledge and Data Engineering,1993,5(6) : 914-925.
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press,1993 : 207-216.
  • 3BRIN S, MOTWANI R, ULLMAN JD, et al. Dynamic itemset counting and implication rules for market basket data[ C ]//Proc of ACM SIGMOD International Conference on Management of data. New York: ACM Press, 1997 : 255-264.
  • 4SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algo- rithm for mining association rules in large databases[ C ]//Proc of the 21st International Conference on Very Large Data Bases. San Francis- co: Morgan Kaufmann Publishers,1995 : 432-444.
  • 5YE Qiang, LI Yi-jun, ZHANG Jie. Improved method in association rule mining[ C]//Proc of the 8th Asia Pacific Management Confe- rence. 2002 : 1 - 8.
  • 6BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market baskets: generalizing association rules to correlations [ C ]//Proc of ACM SIG- MOD International Conference on Management of Data. New York: ACM Press, 1997: 265-276.
  • 7HAN Jia-wei, KAMBER M. Data mining concepts and techniques [ M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 8OMIECINSKI E. Alternative interest measures for mining associations in databases[J]. IEEE Trans on Knowledge and Data Enginee- ring,2003,15( 1 ) : 5?-69.
  • 9LEE Y K, KIM W Y, CAI Y D, et al. CoMine: efficient mining of correlated patterns [ C ]//Proc of the 3rd IEEE International Confe- rence on Data Mining. WaShington DC: IEEE Computer Society, 2003: 581 -584.
  • 10马占欣,王新社,黄维通,陆玉昌.对最小置信度门限的置疑[J].计算机科学,2007,34(6):216-218. 被引量:5

二级参考文献29

  • 1罗可,郗东妹.采掘有效的关联规则[J].小型微型计算机系统,2005,26(8):1374-1379. 被引量:12
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3马占欣,黄维通,陆玉昌.相关度计算方法存在的问题及修正[J].计算机工程,2007,33(11):67-69. 被引量:13
  • 4POPESCU A M,YATES A,ETZIONI Q.Class extraction from the World Wide Web[C] //Proc of AAAI-04 Workshop on Adaptive Text Extraction and Mining.San Jose,CA:American Association for Artificial Intelligence,2004:1-6.
  • 5HU Ming-qing,LIU Bing.Mining and summarizing customer reviews[C] //Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2004:168-177.
  • 6LIU Bing,HU Ming-qing,CHENG Jun-sheng.Opinion observer:analyzing and comparing opinions on the Web[C] //Proc of the 14th International Conference on World Wide Web.New York:ACM Press,2005:342-351.
  • 7KOBAYASHI N,INUI K,MATSUMOTO Y,et al.Collecting evalua-tive expressions for opinion extraction[C] //Proc of the 1st International Joint Conference on Natural Language Processing.Berlin:Springer,2005:596-605.
  • 8POPESCU A M,ETZIONI Q.Extracting product features and opi-nions from reviews[C] //Proc of HLT-EMNLP.Morristown,NJ:Association for Compatational Linguistics,2005:339-346.
  • 9LIU Jian,WU Geng-feng,YAO Jian-xin.Opinion searching in multi-product reviews[C] //Proc of the 6th IEEE International Conference on Computer and Information Technology.Washington DC:IEEE Computer Society,2006:25-30.
  • 10SHI Bin,CHANG Kui-yu.Mining Chinese reviews[C] //Proc of the 6th IEEE International Conference on Data Mining.Washington DC:IEEE Computer Society,2006:585-589.

共引文献73

同被引文献50

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部