期刊文献+

基于小波块阈值降噪的OFDM系统信道估计算法 被引量:3

Channel Estimation Based on Block-thresholding Wavelet Denoising for OFDM System
在线阅读 下载PDF
导出
摘要 提出了基于小波块阈值降噪的OFDM信道估计算法。该算法通过对最小二乘信道估计算法的结果进行小波块阈值降噪来提高信道估计性能。与传统信道估计算法相比,块阈值降噪算法由于利用了信道频率响应小波系数的局部相关性,在仅增加少量运算量的前提下,大大降低了信道估计的均方误差、系统的误符号率和计算复杂度,运算量仅正比于有效子载波数,且在系统CP长度小于信道多径时延扩展时算法仍然可以保持很好的性能。数值仿真结果证明了上述结论的正确性。 A block-thresholding wavelet denoising based channel estimation algorithm was proposed.The algorithm improved the channel estimation performance by denoising the channel frequency function estimated by Least Square Estimator using block thresholding wavelet denoising.Compared with the conventional algorithms,block thresholding wavelet denoising algorithm ultilized the local correlation of the wavelet coefficients,so using the proposed method the mean square error and symbol error rate can be reduced greatly,and the computation complexity is only linearly proportional to the number effective subcarriers.The proposed method also poses good robustness when the CP length of the system is shorter than the delay spread of the channel.Numeric simulations show the performance improvement of the proposed algorithm to the conventional ones.
出处 《计算机科学》 CSCD 北大核心 2011年第6期74-76,105,共4页 Computer Science
基金 国家自然科学基金项目(60802009) "十一五"国家863计划课题项目(2008AA01Z204)等资助
关键词 OFDM 信道估计 小波降噪 块阈值 OFDM Channel estimation Wavelet denoising Block thresholding
  • 相关文献

参考文献12

  • 1杨永立,朱光喜,REMI Tassing,苏钢.基于非参数平滑的OFDM系统信道估计算法[J].计算机科学,2009,36(6):53-56. 被引量:1
  • 2杨永立,朱光喜,陈永辉,王德胜.OFDM系统基于二维核回归算法的衰落信道估计[J].微电子学与计算机,2009,26(12):104-108. 被引量:1
  • 3Ozdemir M K,Arslan H. Channel Estimation for Wireless Ofdm Systems[J]. IEEE Communications Surveys & Tutorials, 2007, 9(2):31.
  • 4Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way (3e) [M]. New York: Academic Press, 2008.
  • 5Percival Donald B, Walden Andrew T. Wavelet Methods for Time Series Analysis. Cambridge[M]. England: Cambridge Uni- versity Press, 2000.
  • 6Tony C. On Block Thresholding in Wavelet Regression: Adap- tivity, Block Size, And Threshold Level[J]. Statistica Sinica, 2002,12: 1241-1273.
  • 7Cai Tony, Low Mark. Nonparametric Function Estimation Over Shrinking Neighborhoods: Superefficiency And Adaptation [ J ]. The Annals of Statistics, 2005,33:184-213.
  • 8Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data[C]//Engineering in Medicine and Biolo- gy Society. Engineering Advances: New Opportunities for Bio- medical Engineers. Proceedings of the 16th Annual International Conference of the IEEE. vol. 21,1994:A24-A25.
  • 9Tony C, Harrison Z. A Data-driven Block Thresholding Ap- proach To Wavelet Estimation [J]. The Annals of Statistics, 2009,37 : 569-595.
  • 10Peter H, Spiridon P,Gerard K, et al. Numerical performance of block thresholded wavelet estimators[J]. Statistics and Compu- ting, 1997,7(2): 115-124.

二级参考文献16

  • 1LIAODechun,LIAOXinhao,ZHOUYonghong.Statistical property of the Chandler wobble excitation function[J].Chinese Science Bulletin,2004,49(22):2348-2353. 被引量:1
  • 2Mehmet K O, Huseyin A, et al. Channel estimation for wireless OFDM systems[J]. IEEE Communications surveys & tutorials, 2007,9 (2) : 18-48
  • 3Li Dong, Guo Feng, et al. Enhanced DFT Interpolation - based Channel Estimation for OFDM Systems with Virtual Subcarriers [C]//IEEE Vehicular Technology Conference, 2006 (VTC 2006-Spring). Vol 4, Melbourne, May 2006 : 1580-1584
  • 4Seo J W, Wee J W, Jeon W G, et al. An Enhanced DFT-based Channel Estimation using Virtual Interpolation with Guard Bands Prediction for OFDM[C]//Proc. IEEE PIMRC' 06. Helsinki, Sept. 2006
  • 5Hardle W. Applied Nonparametric Regression[M]. Cambridge, England: Cambridge University Press, 1990
  • 6Jose L G, Emma O, et al. Moving Average and Savitzki-Golay Smoothing Filters Using Mathead [C] // International Conference on Engineering Education, ICEE 2007. Coimbra,Portugal Sep. 2007
  • 7Savitzky A,Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964,36(8) :1627-1639
  • 8Samprit C, Hadi A. Regression Analysis by Example[C]//4th ED. John Wiley & Sons, Inc. , Hoboken, New Jersey, 2006
  • 9IEEE Std 802. 16eTM-2005. IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Fixed and Mo- bile Broadband Wireless Access Systems, Amendment 2 : Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands Corrigendum I[S]. IEEE, Feb. 2006
  • 10ITU-R. Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000. ITU RECOMMENDATION, ITU-R M. 1225,1997

同被引文献39

  • 1吕爱琴,田玉敏,朱明华.基于MATLAB的OFDM系统仿真及性能分析[J].计算机仿真,2005,22(10):164-168. 被引量:25
  • 2陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204. 被引量:27
  • 3王文博,郑侃.宽带无限通信OFDM技术[M].北京:人民邮电出版社,2007.
  • 4Meng-Han Hsieh,Che-Ho Wei,Channel estimationfor OFDM systems based on comb-type pilot arrangementin frequency selective fading channels.IEEE Transactionson Consumer Electonics,1998,1(44):215-217.
  • 5Yushi Shen,Ed Martinez.Channel Estimation in OFDMSystem[J].Free scale Semiconductor,2006:1-9.
  • 6O Edfors,Msandelll,J-J van de Beek,SK Wilson.“OFDM channel estimation by singular value decomposi-tion”.In Proc.IEEE 46th Vehicular Tech.Conference,Atlanta,GA,USA,1996,(4):923-927.
  • 7Yuan J, He Z J, Zi Y Y. Gear fauh delection using customized muhiwavelet lifting schemes [J]. Mechan- ical System and Signal Processing, 2010, 2,1 ( 5 ): 1 509-1 528.
  • 8Donoho D L. De-nosing by soft thresholding [J].IEEE Transactions on Information Theory, 1.995, 41 (3): 613-627.
  • 9Strela V, Heller P N, Strang G, et al. The application of muhiwavelel fiherbanks of image processing [J].IEEE Transactions on Signal Processing, 1999, 8(4) : 548-563.
  • 10Khadem S E, Rezaee M. Development of vibration signature analysis using muhi wavelets systems [J]. Journal of Sound and Vibration, 2003, 261: 613-633.

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部