期刊文献+

Tracking control of the linear differential inclusion

Tracking control of the linear differential inclusion
原文传递
导出
摘要 The tracking control of linear differential inclusion is discussed. First, the definition of uniformly ultimate boundedness for linear differential inclusion is given. Then, a feedback law is constructed by using the convex hull Lyapunov function. The sufficient condition is given to guarantee the tracking error system uniformly ultimately bounded. Finally, a numerical example is simulated to illustrate the effectiveness of this control design. The tracking control of linear differential inclusion is discussed. First, the definition of uniformly ultimate boundedness for linear differential inclusion is given. Then, a feedback law is constructed by using the convex hull Lyapunov function. The sufficient condition is given to guarantee the tracking error system uniformly ultimately bounded. Finally, a numerical example is simulated to illustrate the effectiveness of this control design.
机构地区 School of Electronic
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第6期464-469,共6页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project (No. 61074003) supported by the National Natural Science Foundation of China
关键词 Linear differential inclusions Tracking control Convex hull Lyapunov functions Uniformly ultimate boundedness Linear differential inclusions, Tracking control, Convex hull Lyapunov functions, Uniformly ultimateboundedness
  • 相关文献

参考文献22

  • 1Aubin, J., Cellina, A., 1984. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer Verlag, Berlin.
  • 2Botchkarev, O., Tripakis, S., 2000. Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. LNCS, 1790:73-88. [doi:10.1007/3- 540-46430-1_ 10].
  • 3Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequlities in System and Control Theory. SIAM, Philadelphia.
  • 4Cai, X., Liu, L., Zhang, W., 2009. Saturated control design for linear differential inclusions subject to disturbance. Nonl. Dynam., 58(3):487-496. [doi:10.1007/s11071-009-9494-z].
  • 5Chen, J.W., 2001. Asymptotic stability for tracking control of nonlinear uncertain dynamical systems described by differential inclusions. J. Math. Anal. Appl., 261(1):369-389. [doi:10.1006/jmaa.2001.7531].
  • 6Gao, H., Chen, T., 2008. Network-based H∞ output tracking control. IEEE Trans. Automat. Control, 53(3):655- 667. [doi: 10.1109/TAC.2008.919850].
  • 7Goebel, R., Teel, A., Hu, T., Lin, Z., 2004. Dissipativity for Dual Linear Differential Inclusions Through Conjugate Storage Functions. 43rd IEEE Conf. on Decision and Control, p.2700-2705.
  • 8Hayakawa, T., Haddad, W., Hovakimyan, N., Chellaboina, V., 2005. Neural network adaptive control for nonlinear nonnegative dynamical systems. IEEE Trans. Neut. Networks, 16(2):399-413. [doi:10.1109/TNN.2004. 841791].
  • 9Hu, T., 2007. Nonlinear control design for linear differential inclusions via convex hull of quadratics. Automatica, 43(4):685-692. [doi:10.]016/j.automatica.2006.10.015].
  • 10Hu, T., Lin, Z., 2004. Properties of the composite quadratic Lyapunov functions. IEEE Trans. Automat. Control, 49(7):1162-1167. [doi: 10.1109/TAC.2004.831132].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部