摘要
利用凸集分离定理和集值映射的高阶广义相依(邻接)导数,讨论向量优化问题的强有效解的最优性条件.在广义锥次似凸的条件下,获得了无约束向量优化问题的强有效解的高阶必要与充分最优性条件.
By using the separation theorem of convex sets and higher order generalized contingent(adjacent) derivatives of set-valued maps,the optimality conditions for strong efficient solutions of vector optimization problems are discussed.Under the generalized cone-subconvexlikeness,the higher order necessary and sufficient optimality conditions are obtained for strong efficient solutions of unconstrained set-valued optimization problems.
出处
《北华大学学报(自然科学版)》
CAS
2011年第3期275-278,共4页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金项目(10871216,11071267)
重庆市教育委员会科学技术研究项目(KJ100419)
重庆市自然科学基金计划项目
重庆交通大学高教所教改研究课题(1003011)
关键词
向量优化问题
强有效解
高阶广义相依(邻接)导数
高阶最优性条件
vector optimization problems
strong efficient solutions
higher order generalized contingent(adjacent) derivatives
higher order optimality conditions