期刊文献+

基于轮廓图像空频域特征的人体姿态分层识别算法 被引量:7

A Hierarchical Algorithm for Human Posture Recognition Based on Spatial and Frequency Domain Features
原文传递
导出
摘要 人体姿态识别是当前自动视频理解技术的研究热点,其难点在于在实际应用中很难同时保障准确度、鲁棒性和实时性.当前基于二维图像的主流算法中,一类为基于高层人体结构的信息,其准确度高,但实时性较差;另一类为基于低层图像信息,算法简单,但其准确度较低.针对该问题,文中提出一种人体姿态建模和识别算法.该算法首先采用高斯混合模型快速提取运动目标和归一化轮廓图像,然后利用人体轮廓参数构建一组12维特征向量,建立人体姿态模型,最后通过分层识别方法实现对人体姿态的认知.该算法可以有效地识别人体姿态,计算复杂度较低,对存在干扰的图像具有较好的识别效果.基于标准视频库的实验结果验证了方法的有效性,与链码标记算法的对比实验验证了方法的优越性. Human posture recognition is a research hotspot in the automatic video understating technology. It is difficulty to ensure the accuracy, robustness and real-time at the same time in practical applications. The existing mainstream algorithms based on 2D image information can be classified into two classes: the methods based on high level human model which have high accuracy and high-complexity; the methods based on low level image information which have low-complexity and low accuracy. A algorithm for human posture recognition is proposed to solve this problem. Firstly, Gaussian mixture model is exploited to extract foreground and normalized human silhouette. Then, a 12-dimensional invariant eigenvector is constructed, thereby the human posture model is established. Finally, a hierarchical recognition method is adopted to recognize the postures. This algorithm is efficient, has low complexity, and achieves good effect for some interfered images. The results of the experiments based on standard video database verify the validity of the proposed algorithm, and the superiority of the algorithm is also verified compared with chain code algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第3期411-416,共6页 Pattern Recognition and Artificial Intelligence
基金 国家863高技术发展计划项目(No.2009AA11A113) 高等学校博士学科点专项科研基金项目(No.20093402110014)资助
关键词 人体姿态识别 人体姿态模型 码书 傅立叶描述子 Human Posture Recognition, Human Posture Model, Codebook, Fourier Descriptor
  • 相关文献

参考文献14

  • 1Moeslund T B, Hilton A, Krtiger V. A Survey of Advances in Vision-Based Human Motion Capture and Analysis. Computer Vision and Image Understanding, 2006, 104(2) : 90 - 126.
  • 2谷军霞,丁晓青,王生进.行为分析算法综述[J].中国图象图形学报,2009,14(3):377-387. 被引量:40
  • 3徐光祐,曹媛媛.动作识别与行为理解综述[J].中国图象图形学报,2009,14(2):189-195. 被引量:51
  • 4Ben-Arie J, Wang Zhiqiang, Pandit P, et al. Hunmn Activity Rec- ognition Using Multidimensional Indexing. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24 ( 8 ) : 1091 - 1104.
  • 5Park S, Mohan T. Driver Activity Analysis for Intelligent Vehicles: Issues and Development Framework// Proc of the IEEE Intelligent Vehicles Symposium. Las Vegas, USA, 2005: 644- 649.
  • 6Gritai A, Sheikh Y, Shah M. On the Use of Anthropometry in the Invariant Analysis of Human Actions//Proc of the 17th Internation- al IEEE Conference on Pattern Recognition. Cambridge, UK, 2004, Ⅱ : 923 -926.
  • 7Singh M, Basu A, Mandal M K. Human Activity Recognition Based on Silhouette Directionality. IEEE Trans on Circuits and Systems for Video Technology, 2008, 18(9) : 1280 - 1292.
  • 8Li C C, Chen Y Y. Human Posture Recognition by Simple Rules// Proc of the IEEE Conference on Systems, Man and Cybernetics. Taipei, China, 2006 : 3237 - 3240.
  • 9de Leon R D, Sucar L E. Human Silhouette Reeognition with Fou- rier Descriptors// Proc of the IEEE Conference on Pattern Recogni- tion. Hiltan Heads, USA, 2000,Ⅲ: 709-712.
  • 10李彬,刘冀伟,韩鸿哲,王志良,李正熙.基于步态特征的快速身份识别方法[J].计算机工程与应用,2004,40(22):60-61. 被引量:6

二级参考文献113

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 3Zhang D, Gatica-Perez D, Bengio S, et al. Modeling individual group actions in meetings: a two-layer HMM framework[A]. In: Proceedings of IEEE CVPR Workshop on Detection and Recognition of Events in Video[ C ] , Washington, DC, USA,2004 : 117-125.
  • 4Olivier N, Horovitz E, Garg A. Layered representations for human activity recognition [ A ] . In: Proceedings of IEEE International Conference on Muhimodal Interfaces [ C ] , Pittsburgh, PA, USA, 2002 : 3-8.
  • 5Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks [ J ] . Computer Vision and Image Understanding, 2003, 92(2-3) : 196-216.
  • 6Du Y T, Chen F, Xu W L, et al. Recognizing interaction activities using dynamic Bayesian network [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], New York, USA. 2006: 618-621.
  • 7Buxton H, Gong S G. Advanced visual surveillance using Bayesian networks [ A ]. In: Proceedings of International Conference on Computer Vision [ C ] , Boston, MA, USA, 1995 : 111 - 123.
  • 8Oliver N, Horvitz E. A comparison of HMMs and dynamic Bayesian networks for recognizing office activities [ A ]. In: Proceedings of lOth International Conference on User Modeling [ C ] , Edinburgh, UK, 2005 : |99-209.
  • 9Sminchisescu C, Kanaujia A, Metaxas D. Conditional models for contextual human motion recognition [ J ]. Computer Vision and Image Understanding, 2006,104 ( 2-3 ) : 210-220.
  • 10Olival A, Torralba A. The role of context in object recognition[ J]. Trends in Cognitive Sciences, 2007,11(12) : 520-527.

共引文献91

同被引文献60

  • 1李庆,师小凯.基于隐马尔科夫模板模型的视频动作识别算法[J].武汉理工大学学报(信息与管理工程版),2013,35(6):789-793. 被引量:1
  • 2张敏,张恒义,郑筱祥.基于轮廓曲率和谱系聚类的大鼠体态自动识别[J].浙江大学学报(工学版),2006,40(3):524-527. 被引量:11
  • 3张便利,常胜江,李江卫,王凯,申会庭,张延炘,翟宏琛.基于彩色直方图分析的智能视频监控系统[J].物理学报,2006,55(12):6399-6404. 被引量:17
  • 4胡晓莉,江杰,王建国.视频图像识别报警系统的研究[J].微计算机信息,2007,23(02X):280-281. 被引量:8
  • 5BARRON J L, FLEET D Performance of optical flw tional Journal of Computer 43 - 77. J, BEAUCHEMIN S S. techniques [ J]. Interna- Vision, 1994, 12(1):.
  • 6MEIER T. Automatic segmentation of moving objects for video object plane generation[J. IEEE Transca- tions on Circuits and Systems Video Technology, 1998, 8(5): 523-528.
  • 7LIPTON A J, FUJIYOSHI H, PATIL R S. Moving target classification and tracking from real - time video [ C ]//IEEE Proceedings of the Workshop on Applica- tion of Computer Vision. Los Alamitos: IEEE com- puter Society Press, 1998 : 8 - 14.
  • 8Chen Shoushun,Martini B,Culurciello E.A Bio-inspired Event-based Size and Position Invariant Human Posture Recognition Algorithm[C]//Proc.of IEEE International Symposium on Circuits and Systems.Taipei,China:[s.n.],2009:775-778.
  • 9LeH,Thuc U,Tuan P V,et al.An Effective 3D Geometric Relational Feature Descriptor for Human Action Recognition[C]//Proc.of IEEE InternationalConference on Computing and Communication Technologies,Research,Innovation,and Vision for the Future.Ho Chi Minh City,Vietnam:[s.n.],2012:1-6.
  • 10Lee Y,Jung K.Non-temporal Multiple Silhouettes in Hidden Markov Model for View Independent Posture Recognition[C]//Proc.of IEEE International Conference on Computer Engineering and Technology.Singapore:[s.n.],2009:466470.

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部