期刊文献+

基于模拟退火的多标记数据特征选择 被引量:6

Feature selection for multi-label data by using simulated annealing
在线阅读 下载PDF
导出
摘要 多标记数据有很多的冗余特征和数据,为了解决多标记数据中冗余和无关特征,提高多标记学习算法的泛化能力。提出一个基于模拟退火的卷积式特征选择方法——SAML(simulated annealing based feature selection for multi-label data),已有的算法只是使用了遗传算法来进行优化,新算法采用模拟退火来寻找最优子集,其效果在已有的工作中表现出比前者遗传算法更好的效果。在用于公开评测的Yahoo网页分类数据集上的实验结果表明,SAML算法的性能优于新近提出的一些流行的多标记特征选择方法。 There are many redundant features in the data sets, in order to remove the irrelevant and redundant features in the multi-label data and further to improve the generalization performance of multi-label learning algorithms, simulated annealing based feature selection for multi-label data (SAML) is proposed, which employs the simulated annealing algorithm to search the optimal subsets. We know simulated annealing algorithm perform better than genetic algorithm. Experiments on Yahoo web page categorization data sets, which are widely used for benchmark evaluation, show that the performance of SAML is superior to some state-of-arts multi-label dimensionality reduction methods.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2494-2496,2500,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(61005006)
关键词 多标记学习 特征选择 模拟退火 维数约简 YAHOO网页 multi-label learning feature selection simulated annealing dimension reduction Yahoo web
  • 相关文献

参考文献18

  • 1Tsousmakas G,Zhang M L,Zhou Z H.Leaming from multi-labeldata[C]. Bled,S Iovenia:ECML/PKDD'09,2009.
  • 2Zhang M-L,Zhou Z-H.Multi-label learning by instance differen- tiation [C]. Vancouver, Canada: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,2007:669-674.
  • 3Zhou Z-H,Zhang M-L.Multi-instance multi-label learning with application to scene classification[C].Sch61kopfB,Platt J C,Ho- fmann T, et al.Vancouver, Canada:Advances in Neural lnforma- tJon Processing Systems. Cambridge, MA: MIT Press, 2007: 1609-1616.
  • 4Zhang M-L,Zhou Z-H.A k-nearest neighbor based algorithm for multi-label classification[C].Beijing, China: Proceedings of the I st IEEE International Conference on Granular Computing, 2005:718-721.
  • 5Zhang M-L,Zhou Z-H.Multilabel neural networks with applica- tions to functional genomics and text categorization [J]. IEEE Transactions on Knowledge and Data Engineering,2006,18(10): 1338-1351.
  • 6Jin R,Wang S,Zhou Z-H.Learning a distance metric from multi- instance multi-label data[C].Miami,FL:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2009:896-gl)2.
  • 7Li Y-X,Ji S,Kumar S,et aLOrosophda gouc cxprCssiort patteru annotation through multi-instance rnulti-label leamingb [J]. ACM/IEEE Transactions on Computational Biology and Bioin- formatics,2011,4(2) :22-35.
  • 8Li Y-X,Ji S,Ye J,et al.Drosophila gene expression pattern annota- tion through multi-instance multi-label learning[C]. Pasadena, CA:Proceedings of the 21st International Joint Conference on Artificial Intelligence,2009:1445-1450.
  • 9Zhang Y, Zhou Z-H.Multi-label dimensJonality reduction via de- pendency maximization[C].Chicago,IL:Proceedings of the 23rd AAAI Conference on Artificial Intelligence,2008:1503-1505.
  • 10Zhang Y, Zhou Z H.Multi-label dimensionality reduction via de- pendence maximization [J]. ACM Transactions on Knowledge Discovery from Data,2010,4(3): 14-24.

二级参考文献15

  • 1李丹,李国正,陆文聪.用于药物活性预报的Co-Training方法[J].计算机科学,2006,33(12):159-161. 被引量:3
  • 2Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization. Machine Learning, 2000, 39 (2--3):135-168.
  • 3McCallum A. Multi-label text classification with a mixture model trained by EM. Working Notes of the AAAI' 99 Workshop on Text Learning. Orlando: AAAI, 1999.
  • 4Boutell M R, Luo J, Shen X, et al. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757-1771.
  • 5Yin Z, Zhou Z H. Multi-label dimensionality reduction via dependency maximization. Proceedings of the 23^rd AAAI Conference on Artificial Intelligence, Chicago, IL: AAAI, 2008, 1503-1505.
  • 6Yu K, Yu S P, Tresp V. Multi-label informed latent semantic indexing. Proceedings of the 28^th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY:ACM, 2005, 258--265.
  • 7Moody J, Utans J. Principled architecture selection for neural networks: Application to corporate bond rating prediction. Moody J E, Hanson S J, Lippmann R P. Neural Information Processing Systems 4. Morgan Kaufmann Publishers, Inc. 1992, 683-690.
  • 8Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003, 3:1157-1182.
  • 9Li G Z, Yang J. Feature selection for multiclass problems using support vector machines. Proceedings of the 8^th Pacific Rim International Conference on Artificial Intelligence. Auckland: PRICAI, 2004, 292-300.
  • 10:i G Z, Meng H H. Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinformatics, 2008, 9 (S6) : S7.

共引文献11

同被引文献70

  • 1崔文岩,孟相如,李纪真,王明鸣,陈天平,王坤.基于粗糙集粒子群支持向量机的特征选择方法[J].微电子学与计算机,2015,32(1):120-123. 被引量:9
  • 2赵云,刘惟一.基于遗传算法的特征选择方法[J].计算机工程与应用,2004,40(15):52-54. 被引量:16
  • 3边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2001.
  • 4叶志伟,郑肇葆,万幼川,虞欣.基于蚁群优化的特征选择新方法[J].武汉大学学报(信息科学版),2007,32(12):1127-1130. 被引量:23
  • 5LEE S H, LEE S, SONG H, et al. Wireless sensor network design for tactical military" applications: remote large-scale environments [ C]//Proc of the 28th IEEE Military Communications Conference. Piscataway:IEEE Press, 2009 : 911-917.
  • 6DONG Xin, VURAN M C. Environment aware connectivity for wire- less underground sensor networks [ C ]//Proc of IEEE INFOCOM. 2013 : 674-682.
  • 7TOLLE G, POLASTRE J, SZEWCZYK R, et al. A macroscope in the redwoods [ C ]//Proc of the 3rd ACM Conference on Embedded Networked Sensor Systems. New York : ACM Press, 2005 : 51-63.
  • 8BUONADONNA P, GAY D, HELLERSTEIN J M, et al. TASK: sensor network in a box [ C ]//Proc of the 2nd European Workshop on Wireless Sensor Networks. Piseataway:IEEE Press, 2005 : 133-144.
  • 9SHAHID N, NAQVI I H, QAISAR S B. Quarter-sphere SVM: attri- bute and spat!o-temporal correlations based outlier & event detection in wireless sensor networks[ C ]//Proc of IEEE Wireless Communica- tions and Networking Conference, 2012: 2048-2053.
  • 10SHAHID N, NAQV1 I H. Energy efficient outlier detection in WSNs based on temporal and attribute correlations [ C ]//Proc of the 7th In- ternational Conference on Emerging Technologies. Washington DC: IEEE Computer Society, 2011 : 1-6.

引证文献6

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部