期刊文献+

SAR目标属性散射中心特征提取与分析 被引量:12

Feature Extraction and Analysis of Attributed Scattering Centers on SAR Targets
在线阅读 下载PDF
导出
摘要 散射中心是高频区雷达目标电磁散射的基本特征,对SAR图像解译、目标识别等具有重要意义。与经典的理想点散射中心模型相比,属性散射中心模型通过引入散射响应对频率、方位角的依赖因子,可更精确地建模高分辨SAR图像目标的散射特性,但与此同时,由于特征参数的维数更高,因此相应的特征提取方法也更复杂。提出了一种基于CLEAN思想的图像域区域解耦合的近似最大似然估计(RD-AML-CLEAN)高分辨SAR图像目标属性散射中心特征提取方法,并通过仿真SAR图像数据的实验结果对算法性能进行了定性、定量的分析与评估。 Scattering center is the essential electromagnetic scattering characteristic of the radar targets in high frequency region,which is of great importance for SAR imagery interpretation and target recognition.Compared with classical ideal point scattering center model,attributed scattering center model is more accurate in modeling the scattering characteristic of the high resolution SAR imagery targets.However,because of its high dimensionality,the method of attributed scattering center extraction is more complicated.This paper presents the region decoupled-approximate maximum likelihood-CLEAN(RD-AML-CLEAN) method for extracting scattering center in high resolution SAR imagery.The performance of the method is analyzed and evaluated qualitatively and quantitatively by simulating SAR imagery.
出处 《雷达科学与技术》 2011年第3期207-212,218,共7页 Radar Science and Technology
关键词 高分辨SAR图像 属性散射中心模型 特征提取 克拉美罗界 high resolution SAR imagery attributed scattering center model feature extraction Cramer-Rao bound
  • 相关文献

参考文献13

  • 1[美]OliverCJ.合成孔径雷达刚像弹解[M].丁赤飚,何国金,译.北京:电子工业出版社,2003.
  • 2Deng Lianping. High Resolution Radar Target Strut ture Description Using Modified Prony Modcl [C]// Proc of IEEE Aerospace and Electronic Conference, Dayton, OH:[s.n.], 199(3:231 238.
  • 3Akyildiz Y, Moses R I: A Scattering Center Model for SAR Imagery[C]//SPIE, Part of the EUROPTO Conference on SAR Image Analysis, Modeling, and Techniques Ⅱ, Florence:[s. n.], Vol. 3869, 1999: 77-85.
  • 4Rigling B D, Moses R 1: GTD-Based Scaltering Models for Bistatic SAR[C]//SPIE, Algorithnls for Syn lhetic Aperture Radar Imagery XI, Orlando, FI.: [s.n.], Vol. 5427, 2004:208-219.
  • 5张爱兵,计科峰,邹焕新,丘昌镇.高分辨SAR目标散射中心模型分析[J].雷达科学与技术,2009,7(6):416-424. 被引量:8
  • 6刘拥军,葛德彪,张忠治,吕小红.有属性的散射中心理论及应用[J].电波科学学报,2003,18(5):559-563. 被引量:11
  • 7Koels M A, Moses R L. Feature Extraction Using Attribuled Scattering Center Models on SAR Imagery [C]//SPIE, Algorithms for Synthetic Aperture Radar Imagery Ⅵ, Orlando, FL:[s.n.], Vol. 3721, 1999: 104-115.
  • 8计科峰,匡纲要,粟毅,郁文贤.基于SAR图像的目标散射中心特征提取方法研究[J].国防科技大学学报,2003,25(1):45-50. 被引量:12
  • 9杨进,闫冬梅,王超,张红.高分辨率SAR图像目标属性散射中心特征提取方法[J].中国图象图形学报,2009,14(1):35-39. 被引量:8
  • 10Jackson J A, Moses R L. An Algorithm for 3D Tar get Scatterer Feature Estimation from Sparse SAR Apertures[C]//SPlE, Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, FL: [s. n. ], Vol. 7337, 2009 :76-88.

二级参考文献22

  • 1肖劲松.MATLAB 5.x与科学计算[M].北京:清华大学出版社,2001..
  • 2Potter Lee C, Moses Randolph L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997,6 (1): 79-91.
  • 3Michael J. Gerry. Two-Dimensional Inverse Scattering Based on the GTD Model [ D ] . Columbus, OH, USA: The Ohio State University, 1997.
  • 4Akyildiz Y, Moses R L. A Scattering Center Model for SAR Imagery [A]. In: Proceedings of SPIE SAR Image Analysis, Modeling and Techniques 1999 [ C ], Florence, Italy, 1999 : 3869:76- 85.
  • 5冈萨雷斯.数字图像处理[M].第二版,北京:电子工业出版社,2003.
  • 6Koets Michael A, Randolph Moses L Feature extraction using attributed scattering center models on SAR imagery [ A]. In : Proceedings of SPIE Conference on Algorithms for SAR Imagery VI[ C] ,Florida,America, 1999,3721 : 104-115.
  • 7Potter Lee C, Chiang Da-ming, Carriere Rob, et al. A GTD-Based parametric model for radar scattering [ J ]. IEEE Transactions on Antennas and Propagation, 1995,43 ( 10 ) : 1058-1067.
  • 8M J Gerry, L C Potter, I J Gupta, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Trans-AP,1999,40(7):1179-1188.
  • 9August W Rihaczek,Steven W Hrshkowitz. Radar resolution and complex-image analysis [M]. Artech House, 1996.
  • 10J J Sacchini,W M Steedly, and R L Moses. Two-dimensional Prony modeling and parameters estimation[J]. IEEE Trans-SP, 1993,41(11):3127-3137.

共引文献39

同被引文献136

  • 1刘莹,曹剑中,许朝晖,田雁,付同堂,王锋.基于灰度相关的图像匹配算法的改进[J].应用光学,2007,28(5):536-540. 被引量:41
  • 2周树 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999..
  • 3黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2006.
  • 4Cai Deng, He Xiaofei,Han Jiawei,et al. Graph Reg-ularized Nonnegative Matrix Factorization for DataRepresentation [ J], IEEE Transactions on PatternAnalysis and Machine Intelligence,2011,33 ( 8 ):1548-1560.
  • 5Sandler R,Lindenbaum M, Nonnegative Matrix Fac-torization with Earth Mover’s Distance Metric for Im-age Analysis[J]. IEEE Transactions on Pattern Anal-ysis and Machine Intelligence, 2011,33 ( 8 ) : 1590-1602.
  • 6He Zhiguo, Lu Jun, Kuang Gangyao. A Fast SARTarget Recognition Approach Using PCA Features[C] // Proceeding of the Fourth International Confer-ence on Image and Graphics, Washington:IEEE Com-puter Society, 2007:580-585.
  • 7Yang Jian,Zhang D, Frangi A F,et al. Two-Dimen-sional PCA: a New Approach to Appearance-BasedFace Representation and Recognition[J], IEEE Trans-actions on Pattern Analysis and Machine Intelligence,2004, 26(1):131-137.
  • 8Yang Jian, Zhang D, Yang Jing-yu. ConstructingPCA Baseline Algorithms to Reevaluate ICA-BasedFace-Recognition Performance [J]. IEEE Transac-tions on Systems,Man, and Cybernetics, 2007,37(4):1015-1021.
  • 9Bartlett M S,Lacies H M,Sejnowski T J. IndependentComponent Representations for Face Recognition[J] //Proc SPIE, 1998, 2399(3):528-539.
  • 10Lee D D? Seung H S. Learning the Parts of Objectsby Non-Negative Matrix Factorization [ J]. Nature,1999, 401(8755):788-791.

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部